

 Grant Agreement No.: 101070473

Call: HORIZON-CL4-2021-DATA-01

Topic: HORIZON-CL4-2021-DATA-01-05

Type of action: HORIZON-RIA

D3.1 MODULAR AND EXTENSIBLE
FLUIDOS NODE

(V1)

Revision: 0.6

Work package WP3

Task All

Due date 30/11/2023

Submission date 22/12/2023

Deliverable lead TOP-IX

Version 0.6

Authors Lorenzo Moro (TOP-IX)

Alessandro Cannarella (TOP-IX)

Ref. Ares(2023)8860839 - 23/12/2023

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 2 of 74

Francesco Barletta (TOP-IX)

Roberto Politi (TOP-IX)

Stefano Braghin (IBM)

George Kornaros (HMU)

Marcello Coppola (STM)

Francesco Cappa (POLITO)

Stefano Galantino (POLITO)

Reviewers Stefano Braghin (IBM)

Emna Amri (CYSEC)

Abstract The extension of Kubernetes to achieve a workload distribution across
different multi-tenant clusters is definitely a challenge both on the
administrative and technical aspects. FLUIDOS tries to fulfil this objective by
creating an ecosystem capable of managing the interactions among
Kubernetes clusters and the overlay technology which exploits this
infrastructure to schedule and run tasks. This deliverable presents the results
of the main activities of WP3, which concentrated on the implementation of
the FLUIDOS Node and the definition of all the related aspects.

Keywords Node, Kubernetes, Cluster

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributor(s)

0.1 15/01/2018 1st version of the template for comments Margherita Facca (MARTEL)

0.2 23/10/2023 1st draft of D3.1 document Lorenzo Moro (TOP-IX)

0.3 17/11/2023 Incorporated IBM contribution Lorenzo Moro (TOP-IX), Stefano
Braghin (IBM)

0.4 04/12/2023 Incorporate HMU/STM contribution Lorenzo Moro, Roberto Politi (TOP-IX),
George Kornaros (HMU), Marcello
Coppola (STM)

0.5 18/12/2023 Ready for review Lorenzo Moro, Roberto Politi (TOP-IX)

0.6 22/12/2023 Update based on IBM and CYSEC review Stefano Braghin (IBM), Emna Amri
(CYSEC)

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 3 of 74

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
"Flexible, scaLable and secUre decentralIzeD Operationg" (FLUIDOS) project’s consortium
under EC grant agreement 101070473 and do not necessarily reflect the views of the
European Commission.

The European Commission is not liable for any use that may be made of the information
contained herein.

COPYRIGHT NOTICE

© 2022 - 2025 FLUIDOS Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 4 of 74

EXECUTIVE SUMMARY

This document provides a comprehensive description of the work carried out in Work
Package 3 of the FLUIDOS project. It concentrates on the key aspects of the three tasks in
which the activity has been divided, namely the node core, the ontology and the edge
architectures.

The content of this document concentrates on the implementation choices, describing the
software developed, the interactions among components, the designed data structures, the
abstractions of resources and services collected into the ontology and the work carried out
to cope with resource constrained edge devices.

A broader overview of the FLUIDOS ecosystem and a deep dive into the several
architectural aspects is addressed in Work Package 2, while the other technical Work
Packages (4, 5 and 6) manage other implementation aspects respectively of the
orchestration algorithms, the security aspects and the energy related analysis.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 5 of 74

TABLE OF CONTENTS

Document Revision History .. 2
Disclaimer ... 3
Copyright notice ... 3

1 INTRODUCTION .. 7
2 NODE CORE .. 8

2.1 FUNCTIONAL ELEMENTS .. 9
2.1.1 Local ResourceManager ... 10
2.1.2 Available Resources .. 10
2.1.3 Discovery Manager ... 10
2.1.4 Peering Candidates ... 11
2.1.5 REAR Manager ... 11
2.1.6 Contract Manager .. 13

2.2 CUSTOM RESOURCES .. 13
2.2.1 Discovery ... 14
2.2.2 Reservation ... 15
2.2.3 Allocation ... 16
2.2.4 Flavour .. 17
2.2.5 Contract ... 18
2.2.6 PeeringCandidate .. 19
2.2.7 Solver .. 20
2.2.8 Transaction .. 21

2.3 REAR PROTOCOL .. 21
2.3.1 State of the art ... 22
2.3.2 Messages .. 28
2.3.3 APIs ... 34
2.3.4 Implementation .. 41

3 ABSTRACTIONS AND MODELS .. 47
3.1 Introduction ... 47
3.2 Ontologies ... 48

3.2.1 Kubernetes .. 48
3.2.2 FLUIDOS ... 48

4 EDGE ARCHITECTURES .. 50
4.1 CLOUD LAYER .. 51

4.1.1 Custom Resources .. 51
4.1.2 Custom Controllers .. 58

4.2 Edge LAYER .. 58
4.2.1 Modules ... 59

4.3 APIs .. 60
4.3.1 Deep/Micro Edge Device Commands ... 60
4.3.2 Router Commands .. 69

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 6 of 74

LIST OF FIGURES

FIGURE 1: FLUIDOS Node implementation overview .. 9
FIGURE 2: Retrieving new, modified or cancelled reservations .. 24
FIGURE 3: Encountering timeout while retrieving reservations .. 24
FIGURE 4: Search for an event and buy a ticket .. 27
FIGURE 5: Interaction between client and provider using the required messages 29
FIGURE 6: Concurrent flavour access from two different clients .. 32
FIGURE 7: Concurrent flavour access from two different clients .. 34
FIGURE 8: Discovery state diagrams .. 41
FIGURE 9: Discovery Controller phases ... 42
FIGURE 10: State diagram for specific object/phase/subtask .. 43
FIGURE 11: Solver Phases and states .. 44
FIGURE 12: Phases hierarchy .. 45
FIGURE 13: Solver phases and states (local and remotes) .. 46
FIGURE 14: Kubernetes ontology visual representation .. 48
FIGURE 15: FLUIDOS ontology visual representation .. 49
FIGURE 16: FLUIDOS Edge architecture overview .. 50

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 7 of 74

1 INTRODUCTION

The primary ambitious objective of FLUIDOS is the creation of a cloud-to-edge computing
continuum. This requires the design and implementation of several software components on
top of Kubernetes, the main virtualization and orchestration technology FLUIDOS relies on.

The technical work has been organized through several work packages, each focusing on a
specific aspect: architecture (WP2), node (WP3), orchestration (WP4), security (WP5) and
energy (WP6). Work Package 3 concentrates on three main objectives: (1) node core
services and interfaces, (2) abstractions and models and (3) edge to cloud hierarchical
architectures.

The first task is related to the implementation of the node core: much effort has been spent
in the translation of the node architecture principles designed in Work Package 2 to a
suitable implementation strategy, focused on the main software components required to
establish the continuum. This software receives as an input a service request from the node
orchestrator (which is being designed and developed in Work Package 4) and produces as
an output a suitable physical or virtual Kubernetes node (belonging to a FLUIDOS Node) to
schedule the job on.

The second task is related to the definition of objects, resource and service abstraction,
which means the semantics of FLUIDOS. The inputs of this task are all the possible resources
and services to be managed in the FLUIDOS ecosystem, from the simple computing
resources (CPU, RAM, storage etc.) to sensors, specific hardware, algorithms etc. The output
is a mapping of all these requirements and the creation of a comprehensive ontology to
define them all.

Finally, the third task concentrates on the hierarchical architectures: this means spanning
from Edge Nodes, which act on behalf of specialized hardware not capable of natively
running Kubernetes, to simple Nodes and even Supernodes, acting as gateways of a
FLUIDOS domain to other domains. These interactions are mediated through Catalogues,
external servers acting both as a true marketplace to engage FLUIDOS services and as a
relay to let different FLUIDOS domains discover each other and facilitate them exchange
resources and services.

This report describes the implementation choices adopted to build the FLUIDOS Node, the
designed ontology and the first work on the edge architectures.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 8 of 74

2 NODE CORE

A FLUIDOS Node is a unique computing environment, under the control of a single
administrative entity (although different Nodes can be under the control of different
administrative entities), composed of one or more machines and modelled with a common,
extensible set of primitives that hide the underlying details (e.g., the physical topology),
while maintaining the possibility to export the most significant distinctive features (e.g., the
availability of specific services; peculiar HW capabilities).

Overall, A FLUIDOS node is orchestrated by a single Kubernetes control plane, and it can
be composed of either a single device or a set of devices (e.g., a datacenter). Device
homogeneity is desired in order to simplify the management (physical servers can be
considered all equals, since they feature a similar amount of hardware resources), but it is
not requested within a FLUIDOS node. In other words, a FLUIDOS node corresponds to a
Kubernetes cluster.

A FLUIDOS node includes a set of resources (e.g., computing, storage, networking,
accelerators), software services (e.g., ready-to-go applications) that can be either leveraged
locally or shared with other nodes. Furthermore, a FLUIDOS node features autonomous
orchestration capabilities, i.e., (1) it accepts workload requests, (2) it runs the requested jobs
on the administered resources (e.g., the participating servers), if application requirements
and system security policies are satisfied, and (3) it features a homogeneous set of policies
when interacting with other nodes.

A Node is a set of software components that live on a Kubernetes cluster, whatever their
kind (eg. Pod, DaemonSet, Service, Job etc.). Each Node embeds all the components,
regardless of the role it takes on, while its behavior is role based. The components interact
with each other exploiting several transmission systems according to the number of
interactions and the messages to be exchanged: as a rule of thumb, local interactions are
mediated by Kubernetes Controllers, while external interactions are managed through
RESTful APIs.

The FLUIDOS Node has been designed and implemented in Go, leveraging Kubernetes
native programming patterns and objects (CRDs, controllers, etcd etc.).

This section describes the FLUIDOS Node Core, the design choices taken and the
implementation patterns adopted. The following picture represents the actual
implementation, the functional elements, the custom resources and the related interactions
of the FLUIDOS Node:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 9 of 74

FIGURE 1: FLUIDOS NODE IMPLEMENTATION OVERVIEW

2.1 FUNCTIONAL ELEMENTS

FLUIDOS Node Core is base of several functional elements, each one responsible for a
specific task:

• Local ResourceManager

• Available Resources

• Discovery Manager

• Discovery Controller

• Peering Candidates

• REAR Manager

• Solver Controller

• Allocation Controller

• Contract Manager

• Reservation Controller

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 10 of 74

2.1.1 Local ResourceManager

The Local Resource Manager was constructed through the development of a Kubernetes
controller. This controller serves the purpose of monitoring the internal resources of
individual nodes within a FLUIDOS Node, representing a cluster. Subsequently, it generates
a Flavour Custom Resource (CR) for each node and stores these CRs within the cluster for
further management and utilization.

2.1.2 Available Resources

Available Resources component is a critical part of the FLUIDOS system responsible for
managing and storing Flavours. It consists of two primary data structures:

• Free Flavours: This section is dedicated to storing Flavours, as defined in the REAR
component.

• Reserved Flavours: In this section, objects or documents representing various
resource allocations are stored, with each represented as a Flavour.

The primary function of Available Resources is to serve as a centralized repository for
Flavours. When queried, it provides a list of these resources. Under the hood, Available
Resources seamlessly integrates with Kubernetes' etcd, ensuring efficient storage and
retrieval of data.

This component plays a crucial role in facilitating resource management within the FLUIDOS
ecosystem, enabling efficient allocation and utilization of computing resources.

2.1.3 Discovery Manager

The Discovery Manager component within the FLUIDOS system serves as a critical part of
the resource discovery process. It operates as a Kubernetes controller, continuously
monitoring Discovery Custom Resources (CRs) generated by the Solver Controller.

The primary objectives of the Discovery Manager are as follows:

• Populating Peering Candidates Table (Client): The Discovery Manager's primary
responsibility is to populate the Peering Candidates table. It achieves this by
identifying suitable resources known as "Flavours" based on the initial messages
exchanged as part of the REAR protocol.

• Discovery (Client): it initiates a LIST_FLAVOURS message, broadcasting it to all known
list of FLUIDOS Nodes.

• Offering Appropriate Flavours (Provider): In response to incoming requests, it will
provide Flavours that best match the specific request.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 11 of 74

2.1.3.1 Discovery Controller

The Discovery controller, tasked with reconciliation on the Discovery object, continuously
monitors and manages its state to ensure alignment with the desired configuration. It
follows the following steps:

1. When there is a new Discovery object, it firstly starts the discovery process by
contacting the Gateway to discover flavours that fits the Discovery selector.

2. If no flavours are found, it means that the Discovery has failed. Otherwise, it refers to
the first PeeringCandidate as the one that will be reserved (more complex logic
should be implemented), while the other will be stored as not reserved.

3. It updates the Discovery object with the PeeringCandidates found.

4. The Discovery is solved, so it ends the process.

2.1.4 Peering Candidates

The Peering Candidates component manages a dynamic list of nodes that are potentially
suitable for establishing peering connections. This list is continuously updated by the
Discovery Manager.

Under the hood, Peering Candidates are stored through an appropriate Custom Resource.

2.1.5 REAR Manager

The REAR Manager plays a pivotal role in orchestrating the service provisioning process. It
receives a solving request, translates them into resource or service requests, and looks up
external suitable resources:

• if no Peering Candidates are found, it initiates the Discovery.

• optionally, if a suitable candidate is found, it triggers the Reservation phase.

• if this process is successfully fulfilled, resources are allocated, contracts are stored, and
optionally can start the Peering phase.

2.1.5.1 Solver Controller

The Solver controller, tasked with reconciliation on the Solver object, continuously monitors
and manages its state to ensure alignment with the desired configuration. It follows the
following steps:

1. When there is a new Solver object, it firstly checks if the Solver has expired or failed
(if so, it marks the Solver as Timed Out).

2. It checks if the Solver has to find a candidate.

3. If so, it starts to search a matching Peering Candidate if available.

4. If some Peering Candidates are available, it selects one and book it.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 12 of 74

5. If no Peering Candidates are available, it starts the discovery process by creating
a Discovery.

6. If the findCandidate status is solved, it means that a Peering Candidate has been
found. Otherwise, it means that the Solver has failed.

7. If in the Solver there is also a ReserveAndBuy phase, it starts the reservation process.
Otherwise, it ends the process, the solver is already solved.

8. Firstly, it starts to get the PeeringCandidate from the Solver object. Then, it forge the
Partition starting from the Solver selector. At this point, it creates
a Reservation object.

9. If the Reservation is successfully fulfilled, it means that the Solver has reserved and
purchased the resources. Otherwise, it means that the Solver has failed.

10. If in the Solver there is also a EnstablishPeering phase, it starts the peering process
(to be implemented). Otherwise, it ends the process.

2.1.5.2 Allocation Controller

The Allocation Controller, tasked with reconciliation on the Allocation object, continuously
monitors and manages its state to ensure alignment with the desired configuration.

Once the Solver has concluded the reservation and purchase of the resources, a new
Allocation object is created in the Inactive status. If the Allocation is of type Node, this
means the Controller is operating inside the Provider Node:

1. The previous Flavour is invalidated, eventually a new one is created detaching the
right Partition from the old one, and the Allocation becomes Reserved.

2. If the ForeignCluster is Ready the Allocation can be set to Active else the Controller
waits for the ForeignCluster to be Ready.

3. Once the ForeignCluster isn’t Ready any more, the Allocation can be set to
Released state.

If the Allocation is of type VirtualNode, this means the Controller is operating inside the
Consumer Node:

1. The Allocation can is set to Reserved state.

2. If the ForeignCluster is Ready the Allocation can be set to Active else the Controller
waits for the ForeignCluster to be Ready.

3. Once the ForeignCluster isn’t Ready any more, the Allocation can be set to
Released state.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 13 of 74

2.1.6 Contract Manager

The Contract Manager is in charge of managing the reserve and purchase of resources. It
handles the negotiation and management of resource contracts between nodes:

• When a suitable peering candidate is identified and a Reservation is forged, the
Contract Manager initiates the Reserve phase by sending
a RESERVE_FLAVOUR message.

• Upon successful reservation of resources, it proceeds to the Purchase phase by
sending a PURCHASE_FLAVOUR message. Following this, it stores the contract
received.

2.1.6.1 Reservation Controller

The Reservation controller, tasked with reconciliation on the Reservation object,
continuously monitors and manages its state to ensure alignment with the desired
configuration. It follows the following steps:

1. When there is a new Reservation object it checks if the Reserve flag is set. If so, it
starts the Reserve process.

2. It retrieves the FlavourID from the PeeringCandidate of the Reservation object. With
this information, it starts the reservation process through the Gateway.

3. If the reserve phase of the reservation is successful, it will create
a Transaction object from the response received. Otherwise, the Reservation has
failed.

4. If the Reservation has the Purchase flag set, it starts the Purchase process.
Otherwise, it ends the process because the Reservation has already succeeded.

5. Using the Transaction object from the Reservation, it starts the purchase process.

6. If the purchase phase is successfully fulfilled, it will update the status of
the Reservation object and it will store the received Contract. Otherwise,
the Reservation has failed.

2.2 CUSTOM RESOURCES

A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a
certain kind; for example, the built-in pods resource contains a collection of Pod objects.
A custom resource is an extension of the Kubernetes API that is not necessarily available in a
default Kubernetes installation. It represents a customization of a particular Kubernetes
installation.

Custom resources can appear and disappear in a running cluster through dynamic
registration, and cluster admins can update custom resources independently of the cluster

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 14 of 74

itself. Once a custom resource is installed, users can create and access its objects
using kubectl, just as they do for built-in resources like Pods.

On their own, custom resources let the developer store and retrieve structured data. By
combining a custom resource with a custom controller, custom resources provide a
true declarative API. The Kubernetes declarative API enforces a separation of
responsibilities. The developer declares the desired state of the resource: the Kubernetes
controller keeps the current state of Kubernetes objects in sync with the declared desired
state.

Custom controllers can work with any kind of resource, but they are especially effective
when combined with custom resources. The Operator pattern combines custom resources
and custom controllers. Custom controllers can be used to encode domain knowledge for
specific applications into an extension of the Kubernetes API.

In the FLUIDOS Node implementation, we’ve adopted the paradigm here described to
manage the workflow, hence defining the following custom resources:

• Discovery

• Reservation

• Allocation

• Flavour

• Contract

• Peering Candidate

• Solver

• Transaction

2.2.1 Discovery

Here is a Discovery sample:

 apiVersion: advertisement.fluidos.eu/v1alpha1
 kind: Discovery
 metadata:
 creationTimestamp: "2023-11-16T16:16:44Z"
 generation: 1
 name: discovery-solver-sample
 namespace: fluidos
 resourceVersion: "1593"
 uid: b084e36b-c9c0-4519-9cbe-7393d3b24cc9
 spec:
 selector:
 architecture: arm64
 rangeSelector:
 MaxCpu: "0"
 MaxEph: "0"
 MaxGpu: "0"
 MaxMemory: "0"
 MaxStorage: "0"

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 15 of 74

 minCpu: "1"
 minEph: "0"
 minGpu: "0"
 minMemory: 1Gi
 minStorage: "0"
 type: k8s-fluidos
 solverID: solver-sample
 subscribe: false
 status:
 peeringCandidate:
 name: peeringcandidate-fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 phase:
 lastChangeTime: "2023-11-16T16:16:44Z"
 message: 'Discovery Solved: Peering Candidate found'
 phase: Solved
 startTime: "2023-11-16T16:16:44Z"

2.2.2 Reservation

Here is a Reservation sample

 apiVersion: reservation.fluidos.eu/v1alpha1
 kind: Reservation
 metadata:
 creationTimestamp: "2023-11-16T16:16:44Z"
 generation: 1
 name: reservation-solver-sample
 namespace: fluidos
 resourceVersion: "1606"
 uid: fb6ad873-7b51-4946-a016-bfdbcff0d2e4
 spec:
 buyer:
 domain: fluidos.eu
 ip: 172.18.0.2:30000
 nodeID: jlhfplohpf
 partition:
 architecture: arm64
 cpu: "1"
 ephemeral-storage: "0"
 gpu: "0"
 memory: 1Gi
 storage: "0"
 peeringCandidate:
 name: peeringcandidate-fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 purchase: true
 reserve: true
 seller:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 solverID: solver-sample
 status:
 contract:
 name: contract-fluidos.eu-k8s-fluidos-bba29928-3c6e
 namespace: fluidos
 phase:
 lastChangeTime: "2023-11-16T16:16:45Z"
 message: Reservation solved
 phase: Solved

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 16 of 74

 startTime: "2023-11-16T16:16:44Z"
 purchasePhase: Solved
 reservePhase: Solved
 transactionID: 37b53e2ba2b7b6ecb96bd56989baecf2-1700151404800502383

2.2.3 Allocation

Here is an Allocation sample:

 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Allocation
 metadata:
 creationTimestamp: "2023-11-16T16:16:45Z"
 generation: 1
 name: allocation-fluidos.eu-k8s-fluidos-bba29928-3c6e
 namespace: fluidos
 resourceVersion: "1716"
 uid: 87894f6c-24a9-4389-bd90-a9e9641aa337
 spec:
 destination: Local
 flavour:
 metadata:
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 spec:
 characteristics:
 architecture: ""
 cpu: 7970838142n
 ephemeral-storage: "0"
 gpu: "0"
 memory: 7879752Ki
 persistent-storage: "0"
 optionalFields:
 availability: true
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"
 memoryStep: 100Mi
 price:
 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos
 status:
 creationTime: ""
 expirationTime: ""
 lastUpdateTime: ""
 intentID: solver-sample
 nodeName: liqo-fluidos-provider
 partitioned: true

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 17 of 74

 remoteClusterID: 40585c34-4b93-403f-8008-4b1ecced6f62
 resources:
 architecture: ""
 cpu: "1"
 ephemeral-storage: "0"
 gpu: "0"
 memory: 1Gi
 persistent-storage: "0"
 type: VirtualNode
 status:
 lastUpdateTime: "2023-11-16T16:16:49Z"
 message: Outgoing peering ready, Allocation is now Active
 status: Active

2.2.4 Flavour

Here is a Flavour sample:

 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Flavour
 metadata:
 creationTimestamp: "2023-11-16T16:13:52Z"
 generation: 2
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 resourceVersion: "1534"
 uid: 5ce9f378-014e-4cb4-b173-5a3530d8f78d
 spec:
 characteristics:
 architecture: arm64
 cpu: 7970838142n
 ephemeral-storage: "0"
 gpu: "0"
 memory: 7879752Ki
 persistent-storage: "0"
 optionalFields:
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"
 memoryStep: 100Mi
 price:
 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 18 of 74

2.2.5 Contract

Here is a Contract sample:

 apiVersion: reservation.fluidos.eu/v1alpha1
 kind: Contract
 metadata:
 creationTimestamp: "2023-11-16T16:16:45Z"
 generation: 1
 name: contract-fluidos.eu-k8s-fluidos-bba29928-3c6e
 namespace: fluidos
 resourceVersion: "1531"
 uid: baa27f94-ebd8-4e7b-98fe-3e7d5b09d4bb
 spec:
 buyer:
 domain: fluidos.eu
 ip: 172.18.0.2:30000
 nodeID: jlhfplohpf
 buyerClusterID: 14461b0e-446d-4b05-b1f8-9ddb6765ac02
 expirationTime: "2024-11-15T16:16:45Z"
 flavour:
 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Flavour
 metadata:
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 spec:
 characteristics:
 architecture: arm64
 cpu: 7970838142n
 ephemeral-storage: "0"
 gpu: "0"
 memory: 7879752Ki
 persistent-storage: "0"
 optionalFields:
 availability: true
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"
 memoryStep: 100Mi
 price:
 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos
 status:
 creationTime: ""
 expirationTime: ""
 lastUpdateTime: ""
 partition:
 architecture: ""

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 19 of 74

 cpu: "1"
 ephemeral-storage: "0"
 gpu: "0"
 memory: 1Gi
 storage: "0"
 seller:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 sellerCredentials:
 clusterID: 40585c34-4b93-403f-8008-4b1ecced6f62
 clusterName: fluidos-provider
 endpoint: https://172.18.0.6:31780
 token:
0959ee7a6290b51cb223f971e30455043a1af01b383b5dc8cd13650a4d61e9b6184c524fc56699d427b
37044fa1e3b05179ecf19f807aa67d26fcaa1cebe4d68
 transactionID: 37b53e2ba2b7b6ecb96bd56989baecf2-1700151404800502383

2.2.6 PeeringCandidate

Here is a PeeringCandidate sample:

 apiVersion: advertisement.fluidos.eu/v1alpha1
 kind: PeeringCandidate
 metadata:
 creationTimestamp: "2023-11-16T16:16:44Z"
 generation: 1
 name: peeringcandidate-fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 resourceVersion: "1592"
 uid: 030c441f-a17e-4778-9515-9cd4293f656a
 spec:
 flavour:
 metadata:
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 spec:
 characteristics:
 architecture: ""
 cpu: 7970838142n
 ephemeral-storage: "0"
 gpu: "0"
 memory: 7879752Ki
 persistent-storage: "0"
 optionalFields:
 availability: true
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"
 memoryStep: 100Mi
 price:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 20 of 74

 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos
 status:
 creationTime: ""
 expirationTime: ""
 lastUpdateTime: ""
 reserved: true
 solverID: solver-sample

2.2.7 Solver

Here is a Solver sample:

 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Solver
 metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"nodecore.fluidos.eu/v1alpha1","kind":"Solver","metadata":{"annotatio
ns":{},"name":"solver-
sample","namespace":"fluidos"},"spec":{"enstablishPeering":true,"findCandidate":tru
e,"intentID":"intent-
sample","reserveAndBuy":true,"selector":{"architecture":"arm64","rangeSelector":{"m
inCpu":"1000m","minMemory":"1Gi"},"type":"k8s-fluidos"}}}
 creationTimestamp: "2023-11-16T16:16:44Z"
 generation: 1
 name: solver-sample
 namespace: fluidos
 resourceVersion: "1717"
 uid: 392ae554-69e4-4639-90ef-34d8f3a83aef
 spec:
 enstablishPeering: true
 findCandidate: true
 intentID: intent-sample
 reserveAndBuy: true
 selector:
 architecture: arm64
 rangeSelector:
 minCpu: 1000m
 minMemory: 1Gi
 type: k8s-fluidos
 status:
 allocation:
 name: allocation-fluidos.eu-k8s-fluidos-bba29928-3c6e
 namespace: fluidos
 contract:
 name: contract-fluidos.eu-k8s-fluidos-bba29928-3c6e
 namespace: fluidos
 credentials:
 clusterID: 40585c34-4b93-403f-8008-4b1ecced6f62
 clusterName: fluidos-provider
 endpoint: https://172.18.0.6:31780
 token:
0959ee7a6290b51cb223f971e30455043a1af01b383b5dc8cd13650a4d61e9b6184c524fc56699d427b
37044fa1e3b05179ecf19f807aa67d26fcaa1cebe4d68
 discoveryPhase: Solved
 findCandidate: Solved

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 21 of 74

 peering: Solved
 peeringCandidate:
 name: peeringcandidate-fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 reservationPhase: Solved
 reserveAndBuy: Solved
 solverPhase:
 endTime: "2023-11-16T16:16:49Z"
 lastChangeTime: "2023-11-16T16:16:49Z"
 message: Solver has enstablished a peering
 phase: Solved

2.2.8 Transaction

Here is a Transaction sample:

 apiVersion: reservation.fluidos.eu/v1alpha1
 kind: Transaction
 metadata:
 creationTimestamp: "2023-11-16T16:16:44Z"
 generation: 1
 name: 37b53e2ba2b7b6ecb96bd56989baecf2-1700151404800502383
 namespace: fluidos
 resourceVersion: "1600"
 uid: a1d73148-0795-4061-80cf-197e6a83379c
 spec:
 buyer:
 domain: fluidos.eu
 ip: 172.18.0.2:30000
 nodeID: jlhfplohpf
 clusterID: 14461b0e-446d-4b05-b1f8-9ddb6765ac02
 flavourID: fluidos.eu-k8s-fluidos-bba29928
 partition:
 architecture: ""
 cpu: "1"
 ephemeral-storage: "0"
 gpu: "0"
 memory: 1Gi
 storage: "0"
 startTime: "2023-11-16T16:16:44Z"

2.3 REAR PROTOCOL

The REsource Advertisement and Reservation (REAR) protocol aims at providing secure data
exchange of resources and capabilities between different cloud providers. It can be used to
advertise resources (e.g., virtual machines and their characteristics in terms of CPU, RAM),
capabilities (e.g., Kubernetes clusters) and (in future) services (e.g., a database as a server) to
any third party, enabling potential customers to know what is available in other clusters, and
possibly (automatically) establish the technical steps that enables the customer to connect
and consume the resources/services agreed in the negotiation phase.

There are two main types of entity involved, which are providers and customers:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 22 of 74

• Providers advertise their resources and services in a standardized format.

• Customers explore and find resources according to their specific criteria.

Overall, REAR seamlessly integrates with established resource management systems and
platforms. This protocol accommodates diverse resource types and allows for future
expansions.

REAR has been designed with a focus on generality. This is because it allows to perform
resource exchange for (possibly) any type of resources and services, ranging from traditional
VMs, Kubernetes clusters, services (e.g., DBs), and sensors and actuators (e.g., humidity and
temperature sensors).

2.3.1 State of the art

This section introduces the state of the art for the REAR protocol, analysing both
commercial solutions and research proposals. We will present how existing companies
tackle the problem of resource acquisition workflows, hence showing which solutions are
adopted in real use cases. This can be used to gain insights into how, different companies
such as Booking.com, manage the process of acquiring resources effectively and efficiently.
Through these real-world scenarios, we will uncover the underlying workflows and
understand how different platforms and frameworks facilitate the resource acquisition
process.

Booking.com

The Booking.com Connectivity APIs enable to send and retrieve data for properties listed
on Booking.com. It is possible to manage room availability, reservations, prices, and many
other things [1].

The Booking.com Connectivity APIs offer a number of specialised functions, divided into
these categories:

• Content: Create properties, rooms, rates, and policies, and link this information
together for the Booking.com website.

• Rates and Availability: Load inventory counts, rates, and price availability restrictions
(for specific room-rate combinations), per date and/or date range combination.

• Reservations: Retrieve reservations, modifications, and cancellations made on
Booking.com.

• Promotions: Create special promotions for certain date ranges and booker types.

• Reporting: Report credit card problems, changes to reservations after check-in, and
no-shows.

In addition to the specialised APIs, we also have a set of supporting APIs for retrieving
general Booking.com system information, such as accepted currency codes and room
names.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 23 of 74

Reservations APIs

A reservation represents the booking of one or more room nights at a property. Each
reservation is a unique booking created by a guest using the Booking.com channels.
Reservations API keeps you updated on your bookings by sending a sequence of messages,
also known as reservation messages. The messages are classified as new booking
confirmation, modification to an existing booking, or cancellation. Regardless of the
category, the reservations API provides the data in a common format. A reservation may
include several units of rooms, apartments or villas. Each reservation or booking is specific
to exactly one property.

To process reservations, Booking.com provides two sets of endpoints using the following
two specifications:

• OTA XML specifications1 (OTA_HotelResNotif e OTA_HotelResModifyNotif): A
complete and fault-tolerant reservations processing solution following the
specification from the OpenTravel Alliance (OTA). Use this solution to retrieve and
acknowledge processing the reservations.

• B.XML specifications2 (/reservations): A simple and light-weight solution to retrieve
reservations following Booking.com’s XML specifications. Use this solution to retrieve
the property reservations. Acknowledging that you successfully processed the
reservation is currently not supported with this solution.

Here, two different examples using B.XML specifications:

1 https://connect.booking.com/user_guide/site/en-US/reservations-api/reservations-process-ota/

2 https://connect.booking.com/user_guide/site/en-US/reservations-api/reservations-process-bxml/

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 24 of 74

FIGURE 2: RETRIEVING NEW, MODIFIED OR CANCELLED RESERVATIONS

FIGURE 3: ENCOUNTERING TIMEOUT WHILE RETRIEVING RESERVATIONS

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 25 of 74

Ticketmaster

Ticketmaster is a globally recognized ticketing platform that revolutionized the way people
purchase tickets for various events, including concerts, sports games, and theatrical
performances. With its user-friendly interface and extensive event catalogue, Ticketmaster
has become a go-to destination for millions of customers worldwide.

The ticket acquisition workflow on Ticketmaster follows several key steps to ensure a
seamless and efficient ticket purchasing process for customers:

• Event Discovery: Customers begin by browsing Ticketmaster’s website or mobile app
to explore upcoming events in their area. They can search by event type, artist, venue,
or date to find the desired event.

• Ticket Selection: Once customers find the event they are interested in, they can select
the specific tickets they want to purchase. Ticketmaster offers various ticket options,
including different seating sections, price ranges, and quantities.

• Seat Allocation: After selecting tickets, the system allocates seats based on the
customer’s preferences and availability. Ticketmaster’s seat selection algorithm
ensures that seats are assigned in the most optimal way to accommodate the
customer’s group and provide an enjoyable experience.

• Checkout Process: Customers proceed to the checkout page, where they review their
ticket selection, enter their payment and billing information, and complete the
transaction. Ticketmaster supports multiple payment methods, including credit cards,
digital wallets, and other secure payment options.

• Order Confirmation: Once the purchase is completed, customers receive an order
confirmation that includes details such as the event name, date, time, seating
information, and a unique order ID. This confirmation serves as proof of purchase and
is often sent via email or can be accessed through the customer’s Ticketmaster
account.

Partner APIs

The Ticketmaster Partner API lets clients reserve, purchase, and retrieve ticket and event
information [2].

If a user abandons a page/tab after a ticket reserve has been made, client applications
should do their best to detect this and issue a DELETE /cart request to free up allocated
resources on the ticketing server. This should also be done if client apps no longer want to
wait through a long, continuing polling process.

This is necessary since ticket reserve requests that result in polling will eventually complete
asynchronously and take up resources even if clients do not consume the next polling URL.

It is possible to use the different APIs to define the workflow for searching and purchasing a
ticket:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 26 of 74

• GET /discovery/v2/events: find events and filter your search by location, date,
availability, and much more.

• POST /partners/v1/events/{event_id}/cart?apikey={apikey}: reserves the specified
tickets. For integrations requiring captcha, send the captcha solution token in the
JSON body. A hold time will be returned in the cart response that will indicate, in
seconds, how long the cart is available for. This value may increase if the user moves
through the cart process.

• GET /partners/v1/events/{event_id}/...: get shipping options available for this event.
Note: some API users will be pre-configured for certain shipping options and may not
need to perform this. Specifying the “region” query parameter will return options
available for users in the selected country. Using the value ‘ALL’ will return all options.

• PUT /partners/v1/events/{event_id}/...: add a shipping option to the event. Note:
some API users will be pre-configured for certain shipping options and may not need
to perform this.

• PUT /partners/v1/events/{event_id}/cart/payment: add customer and billing
information to the order.

• PUT /partners/v1/events/{event_id}/cart?apikey={apikey}: finalize the purchase and
commit the transaction.

Here, an example of workflow to purchase a ticket for a certain event:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 27 of 74

FIGURE 4: SEARCH FOR AN EVENT AND BUY A TICKET

Research Solutions

Reservation protocols are an essential communication mechanism in many areas, which
ensure fair and efficient resource allocation in shared environments. These protocols are
commonly used in distributed systems, networking, and multi-user applications to prevent
conflicts and coordinate access to critical resources.

One of the most adopted reservation protocols in computer networks is RSVP (Resource
Reservation Protocol [3]). Its primary goal is to establish and manage resource reservations
for data transmission, and it is mainly used in Quality of Service (QoS) enabled networks to
ensure the efficient and reliable delivery of data traffic. However, one of the main limitations
of RSVP is its limited scalability, because, as the number of participants and the complexity
of the network increase, managing and maintaining reservations can become challenging.
This is because RSVP operates in a soft-state manner, which requires the continuous
refreshing of reservations, preventing its adoption when a huge amount of (tiny) reservations
are required and in case of mobile hosts, in which the reservation (which requires the
detailed knowledge of the location of the host) is being made by mobile hosts. To
overcome such limitations MRSVP [4] has been proposed, allowing mobile devices to
perform reservations not only for the current location, but also for future locations. In
addition, [5] extends the problem formulation, including the price of networking resources,

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 28 of 74

so that the network service provider can communicate the availability of services and
delivers price quotations and charging information to the user, and the user requests or re-
negotiates services with desired specifications for one or more flows.

As an extension of RSVP, RSVP-TE (Resource Reservation Protocol – Traffic Engineering) is
designed to support traffic engineering capabilities in computer networks. It enables the
establishment of explicit paths for data traffic, allowing network administrators to control the
flow of traffic and optimize network resources. RSVP-TE has thus been proposed in
combination with MPLS to perform path signalling in a wide area network [6][7].

In our perspective, RSVP and similar solutions target only network parameters, failing to
include the multi-dimensionality of the computing resources (e.g., reserve CPU, RAM, etc.).

Authors in [8] present the Service Negotiation and Acquisition Protocol (SNAP) as a means
to enable communication and negotiation between different entities in a distributed system,
such as clients and servers. The protocol aims to establish agreements on the expected
quality of service (QoS) that clients require and that servers can provide. In the attempt to
extend the flexibility of the SLA negotiation mechanism, [9] proposes a bilateral protocol for
SLA negotiation using the alternate offers mechanism wherein a party is able to respond to
an offer by modifying some of its terms to generate a counteroffer. Finally, authors in [10]
also describe a brokering architecture that is able to make advance resource reservations
and create SLAs using the WS-Agreement standard [11], based on the Contract Net
protocol for negotiating SLAs [12].

Recently, also telco Operators in the 5G era have a significant opportunity to monetize the
capabilities of their networks. This paradigm change led to additional requirements for the
Edge infrastructure [13], and to the definition of a suitable protocol to allow seamless
application deployment across different Telco providers [14]. Specifically, this interface
enables also the federation between Operator Platforms, sharing of edge nodes, and access
to Platform capabilities while customers are roaming. The above technical capabilities are
leveraged to provide the same software services associated with the customer also when it
is connected to a foreign operator, thanks to the capability to deploy containerized
applications in the visited Operator Platform. Although promising, the current proposal (i)
does not include a discovery mechanism to allow the members of the federation to share
the price of computing resources or services, (ii) it does not support highly dynamic
environments in which the roaming occurs with unforeseen operators (a previously
established agreement must be already in place before the roaming), and (iii) is not able to
guarantee the property of generality when describing the offered resources/services, but
focuses only on containerized applications.

2.3.2 Messages

REAR defines a set of messages that facilitate the client/provider interaction for the
purchase of available computing resources or services. At its core, REAR has been designed
with a focus on generality (i.e., able to be general enough to describe a huge variety of

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 29 of 74

computing and/or service instances). The figure below depicts a possible interaction
between a customer and a provider using the REAR protocol.

FIGURE 5: INTERACTION BETWEEN CLIENT AND PROVIDER USING THE REQUIRED MESSAGES

This section describes the main interaction enabled by the REAR protocol, whereas the
details of the different APIs will be provided in the following chapter.

The protocol comprises various messages, which can be classified as either required or
optional:

• Required:

• LIST_FLAVOURS, sent by the customer to probe the available flavours offered by a
given provider;

• RESERVE_FLAVOUR, sent by the customer to inform the provider about its
willingness to reserve a specific flavour;

• CONFIRM_RESERVATION, sent by the customer to complete the purchase of an
offered flavour;

• Optional:

• REFRESH_FLAVOUR, sent by the provider to refresh a particular flavour. By
sending a refresh message, the provider helps maintain the availability of flavours
and allows the consumer to effectively manage and allocate resources based on the
updated expiration time;

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 30 of 74

• WITHDRAW_FLAVOUR, sent by the provider to the consumer to notify that a
specific flavour is no longer available. This message serves as a notification
mechanism to inform the consumer that the requested flavour is no longer
available.

Get the list of available flavour

The LIST_FLAVOUR message provides the client with the list of available flavours offered by
a given producer. Using a standardized selector, a client can request the list of available
flavours matching specific needs, like a given amount of computing resources (e.g., CPU,
RAM, storage), the flavour type (e.g., VM, Kubernetes cluster, DB service), and additional
policies (e.g., maximum price).

If properly formatted, the list flavour message returns the list of available flavours offered by
a given producer (if any). Specifically, each item in the list will have the following key
information:

• Flavour ID: Each offer should be identified by a unique Flavour ID instead of just the
name.

• Provider ID: Associate the Flavour with the corresponding Provider ID.

• Type: Specify the type of the Flavour (e.g., VM/K8s Cluster/etc.).

• Characteristics: Specify the capacities and resources provided by the Flavour (CPU,
RAM, etc.).

• Policy: Specify if the Flavour is aggregatable/partitionable

• Owner: represents the entity that owns the Flavour (FQDN/unknown). It can
correspond to the Provider ID of the Flavour.

• Price or Fee: If applicable, specify the price or fee associated with the Flavour.

• Expiration Time: It represents the duration after which the Flavour needs to be
refreshed. If the Flavour is not refreshed within the Expiration Time, it becomes invalid
or expires. The Expiration Time can be calculated by adding a specific timestamp to
the current time, indicating the number of hours or days until expiration.

• Optional Fields: Other details such as limitations, promotions, availability etc., can be
included as optional information.

Note that if the producer does not have available Flavours, or does not have Flavours
matching the provided selector, it may return an empty list.

The interaction is always initiated by the client and can be summarized as follows:

• The client wants to retrieve the list of available flavours offered by a provider.

• The client creates the selector using one of the standardized ones based on the
requirements.

• After the message is ready, an HTTP GET is sent to the provider to get the list of
filtered flavours.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 31 of 74

• The provider returns the list of matching flavours.

• If the provider does not have available flavours, or does not have flavours matching
the specified selector, an empty list will be returned.

If the partitionable field is available, it indicates that the Flavour can be divided or
partitioned into smaller units. However, it is also specified the minimum amount of CPU and
RAM that must be present for the Flavour (e.g., if CPU must be at least one, the CPU cannot
be "partitioned" below that unit). If the field is false, client has no possibilities to divide the
Flavours. Additionally, a step value is defined, which determines the increment between
valid quantities for CPU and RAM. For example, if the step value for CPU is 1, users can
request CPU quantities such as 2, 3, or 4, but not decimal values like 1.4 or 2.6. The step
value ensures that CPU and RAM quantities align with the defined increments and maintain
consistency within the Flavour’s specifications.

When the aggregatable field is available, it means that multiple instances of the same
Flavour can be combined or aggregated together. This enables the pooling of resources to
meet higher demands or optimize resource utilization. The mincount field specifies the
minimum number of Flavours that must be aggregated if "aggregatable" is true. If the field
is false, client can choose that single instance (e.g., a single VM instead of a set of VM).

Reserve a Flavour

The RESERVE_FLAVOUR message is sent by the client to the provider to notify the
intention of reserving an offered flavour. It is the first step that requires to handle the
concurrency in client requests, as different clients may be interested in the same flavour.
Note that this message only notifies the provider the intention of purchasing a flavour, the
request must then be finalized using the confirm purchase message (see following
subsection).

Specifically, the client/provider interaction can be summarized in the following:

• After the client has collected the list of available flavours offered by the provider, it
notifies the intention of reserving a specific flavour by sending an HTTP POST and
including the ID of the flavour to be reserved.

• Once received by the provider, two separate actions are performed:

• The provider checks if the flavour is still available (there might be some delay
between the list flavour message and the subsequent reserve flavour request, thus
the flavour may no longer be available). In case the Flavour is still available the
provider replies with a summary of the reservation process, otherwise a 404-error
message is sent to the client.

• The provider instantiates a timer to limit the reservation time for that specific
flavour. This allows reserved flavours to be released in case either the client
becomes completely irresponsive, or the subsequent purchase process exceeds a
predefined threshold.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 32 of 74

The following figure extends the non-concurrent interaction, including concurrent access to
shared resources (i.e. flavours), from multiple clients. Specifically, the interaction can be
summarized with the following steps:

• Customer 1 and 2 both request the list of available flavours based on predefined
selectors, and they both notify the intention to reserve a specific flavour (i.e., flavour
1234 in this case).

• The first customer to send the reserve flavour message, triggers on the provider side
the acquisition of the lock associated with the shared flavour.

• The first customer can thus continue with the purchase of the selected flavour,
whereas the second will not receive any further messages until the first customer
releases the shared lock, either finalizing the purchase, or exceeding the predefined
timeout.

• In case the first customer finalized the purchase, the second customer will acquire the
shared lock, and receive a 404-error message, notifying that the flavour is no longer
available. In case the first customer didn’t finalize the purchase, the second customer
can proceed with the normal interaction described in the previous use case.

FIGURE 6: CONCURRENT FLAVOUR ACCESS FROM TWO DIFFERENT CLIENTS

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 33 of 74

Confirm a Reservation

The CONFIRM_RESERVATION message is transmitted by the client following the receipt of
the provider's response during the reservation phase. In this context, the client must confirm
the purchase within the timeframe defined as the Time To Purchase (TTP), as outlined in
previous figure.

Subscribe to changes

REAR defines a set of optional messages that extend the expressiveness of the protocol,
and we summarize as subscribe to changes. Specifically, we include two optional
interactions:

• Refresh, sent by the provider to refresh a particular flavour. By sending a refresh
message, the provider helps maintain the availability of flavours and allows the
consumer to effectively manage and allocate resources based on the updated
expiration time.

• Withdraw, sent by the provider to the consumer to notify that a specific flavour is no
longer available. This message serves as a notification mechanism to inform the
consumer that the requested flavour is no longer available.

The following figure details the REAR interaction using the combination of both optional
and required messages. Specifically, the interaction can be summarized as follows:

• The client sends a request to get the list of available flavours matching a predefined
selector

• The client notifies the provider the intention to receive continuous updates on a
specific flavour, using the SUBSCRIBE_FLAVOUR message, that is mapped onto an
appropriate request message which may vary depending on the implementation
technology used (e.g. Websockets, publish/subscribe technologies).

• In case the client is interested in multiple flavours, this results in multiple
SUBSCRIBE_FLAVOUR messages, one for each flavour.

• This internally triggers the creation of a stateful communication channel between the
client and the provider.

• At this point the provided sends asynchronous updates over the created channel to
the client for the specified flavour. We define two different types of updates:

• The refresh expiration time message notifies the client that a previous offer for a
specific flavour is still valid.

• The withdraw message notifies the client that a previous flavour offer is no longer
available for the purchase.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 34 of 74

FIGURE 7: CONCURRENT FLAVOUR ACCESS FROM TWO DIFFERENT CLIENTS

2.3.3 APIs

This chapter details all the REAR messages, their purpose, and the message body.
Specifically, we can distinguish the messages as required and optional:

• Required:

• List flavours, sent by the client to probe the available flavours offered by a given
provider.

• Reserve flavour, sent by the client to perform a reservation on a specific flavour.

• Purchase flavour, sent by the client to complete the purchase of an offered flavour.

• Optional:

• Refresh, sent by the provider to refresh a particular flavour. By sending a refresh
message, the provider helps maintain the availability of flavours and allows the

Customer Provider

LIST_FLAVOURS

OK/KO + Flavour List

optional

SUBSCRIBE_FLAVOUR_TYPE(flavourType)

RESERVE_FLAVOUR(FlavourID)

OK/KO + TTP

CONFIRM_RESERVATION(FlavoudID)

REFRESH_EXPIRATION_TIME(FlavourType)

WIDHTDRAW_FLAVOUR(FlavourType)

optional

optional

OK/KO + token

Text is not SVG - cannot display

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 35 of 74

consumer to effectively manage and allocate resources based on the updated
expiration time.

• Withdrawal, sent by the provider to the consumer to notify that a specific flavour is
no longer available. This message serves as a notification mechanism to inform the
consumer that the requested flavour is no longer available.

Note that the sequence of messages between the client and the provider is fixed, as well as
the order. This is because each step requires a set of information returned from the previous
step(s). Moreover, there is a huge difference in the communication pattern between
required and optional messages. Indeed, required messages follow a client/server
approach, i.e., with the client always initiating the communication, whereas the optional
messages are sent asynchronously by the server towards the clients. Such a design choice
greatly improves the expressiveness of the protocol, but it calls for a different architectural
style for communication (e.g., REST, WebSocket …), as the different types of messages have
different requirements.

2.3.3.1 Required messages

LIST_FLAVOURS

Request body

None

Response body

 Items: [
 Flavor: {
 # FlavorID is the ID of the Flavor
 FlavorID string

 # ProviderID is the ID of the provider of this Flavor.
 ProviderID string

 # Type is the type of the Flavor
 FlavorType string

 # Characteristics contains the characteristics of the Flavor.
 Characteristics Characteristics

 # Policy contains the policy of the Flavor.
 Policy Policy

 # Owner contains the identity info of the owner of the Flavor.
 Owner NodeIdentity

 # Price contains the price model of the Flavor.
 Price Price

 # Optional fields that can be retrieved from the Flavor.
 OptionalFields OptionalFields

 }
]

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 36 of 74

 Characteristics: {
 # Architecture is the architecture of the Flavor.
 Architecture string

 # Cpu is the number of CPU cores of the Flavor.
 Cpu int

 # Memory is the amount of RAM of the Flavor.
 Memory int

 # Gpu is the number of GPU cores of the Flavor.
 Gpu int

 # EphemeralStorage is the amount of ephemeral storage of the Flavor.
 EphemeralStorage int

 # PersistentStorage is the amount of persistent storage of the Flavor.
 PersistentStorage int
 }

 Price: {
 # Amount is the amount of the price.
 Amount string

 # Currency is the currency of the price.
 Currency string

 # Period is the period of the price.
 Period string
 }

 Policy: {
 Partitionable: {
 # CpuMin is the minimum requirable number of CPU cores of the Flavor.
 CpuMin int `json:"cpuMin"`

 # MemoryMin is the minimum requirable amount of RAM of the Flavor.
 MemoryMin int `json:"memoryMin"`

 # CpuStep is the incremental value of CPU cores of the Flavor.
 CpuStep int `json:"cpuStep"`

 # MemoryStep is the incremental value of RAM of the Flavor.
 MemoryStep int `json:"memoryStep"`
 },
 Aggregatable: {
 # MinCount is the minimum requirable number of instances of the Flavor.
 MinCount int

 # MaxCount is the maximum requirable number of instances of the Flavor.
 MaxCount int
 }
 }

 NodeIdentity: {
 # Domain is the domain of the node.
 Domain string

 # NodeID is the ID of the node.
 NodeID string

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 37 of 74

 # IP is the IP of the node.
 IP string
 }

 OptionalFields: {
 # Availability is the availability flag of the Flavor
 Availability bool

 # WorkerID is the ID of the worker that provides the Flavor.
 WorkerID string
 }

LIST_FLAVOURS + Selector

Request body

 Selector: {
 # FlavorType specifies the type of Flavor.
 FlavorType string

 # Architecture specifies the architecture of the resource.
 Architecture string

 # Cpu is the exact desired CPU quantity.
 Cpu int

 # Memory is the exact desired memory quantity.
 Memory int

 # EphemeralStorage is the exact desired ephemeral storage quantity.
 EphemeralStorage int

 # MoreThanCpu specifies the minimum CPU quantity desired.
 MoreThanCpu int

 # MoreThanMemory specifies the minimum memory quantity desired.
 MoreThanMemory int

 # MoreThanEph specifies the minimum ephemeral storage quantity desired.
 MoreThanEph int

 # LessThanCpu specifies the maximum CPU quantity desired.
 LessThanCpu int

 # LessThanMemory specifies the maximum memory quantity desired.
 LessThanMemory int

 # LessThanEph specifies the maximum ephemeral storage quantity desired.
 LessThanEph int
 }

Response body

 Flavor: {
 # FlavorID is the ID of the Flavor
 FlavorID string

 # ProviderID is the ID of the provider of this Flavor.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 38 of 74

 ProviderID string

 # Type is the type of the Flavor
 FlavorType string

 # Characteristics contains the characteristics of the Flavor.
 Characteristics Characteristics

 # Policy contains the policy of the Flavor.
 Policy Policy

 # Owner contains the identity info of the owner of the Flavor.
 Owner NodeIdentity

 # Price contains the price model of the Flavor.
 Price Price

 # Optional fields that can be retrieved from the Flavor.
 OptionalFields OptionalFields
 }

RESERVE_FLAVOUR

In the request body of this message, the client must specify the flavourID of the flavour to
be reserved and its identity. The response body is a summary of the reservation process
called Transaction:

Request body

 Reservation: {
 # FlavorID specifies the ID of the Flavor to be reserved
 FlavorID string

 # Buyer is the buyer Identity of the Fluidos Node that is reserving the
 # Flavor
 Buyer NodeIdentity
 }

Response body

 Transaction: {
 # TransactionID is the ID of the Transaction linked to the Reservation
 TransactionID string

 # FlavorID is the ID of the Flavor that is being reserved
 FlavorID string

 # Buyer is the buyer Identity of the Fluidos Node that is reserving the
 # Flavor
 Buyer NodeIdentity

 # StartTime is the time at which the reservation should start
 StartTime string
 }

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 39 of 74

PURCHASE_FLAVOUR

In the request body of this message, the client must specify the transactionID of the
transaction to be completed, the identity of the client and the flavourID.

Request body

 Purchase: {
 # TransactionID is a unique identifier for the transaction.
 TransactionID string
 }

Response body

 <empty> Status: 200 OK

The implementation of what to return as a response is left to the user (by default, it returns
200 OK). However, one possible solution could be to return a “Contract” that confirms the
successful acquisition of the flavour between the two parties. An example could be:

 Contract: {
 ContractID string
 Flavor Flavor
 Buyer string
 Seller string
 Credentials LiqoCredentials
 }

2.3.3.2 Optional messages

The file format depends on the type of implementation. For now, the proposed
implementation is with WebSocket, so messages are defined in XML (with the possibility of
defining them in other formats such as JSON, etc.). As new technologies could be used in
the future, other message formats may be introduced.

REFRESH_FLAVOUR

The XML structure is defined as follows:

• <RefreshMessage> is the root element of the "refresh" message.

• <Flavour> contains the details of the "Flavour" object that has been refreshed, with
fields like FlavourID, ProviderID, FlavourType, and others.

• <ModificationDetails> contains the details of the changes made to the Flavour,
including the modified fields, the old values, and the new values. It is possible to
add additional fields to this section if necessary.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 40 of 74

 <RefreshMessage>
 <Flavor>
 <!-- Details of the Flavor object that has been refreshed -->
 <FlavorID>string</FlavorID>
 <ProviderID>string</ProviderID>
 <FlavorType>string</FlavorType>
 <!-- Other Flavor fields like Characteristics, Policy, Owner, Price -->
 </Flavor>
 <ModificationDetails>
 <!-- Details of the changes made to the Flavor -->
 <FieldModified>string</FieldModified>
 <OldValue>string</OldValue>
 <NewValue>string</NewValue>
 <!-- It is possibile to add other fields if needed -->
 </ModificationDetails>
 </RefreshMessage>

WITHDRAW_FLAVOUR

The XML structure is defined as follows:

• <WithdrawMessage> is the root element of the "withdraw" message.

• <Flavour> contains the details of the "Flavour" object that is no longer available,
with fields like FlavourID, ProviderID, FlavourType, and others.

• <Reason> contains the details of the reason for the withdrawal of the Flavour,
including the message and other fields for more detailed reasons if needed.

 <WithdrawMessage>
 <Flavor>
 <!-- Details of the Flavor object that is no longer available -->
 <FlavorID>string</FlavorID>
 <ProviderID>string</ProviderID>
 <FlavorType>string</FlavorType>
 <!-- Other Flavor fields like Characteristics, Policy, Owner, Price -->
 </Flavor>
 <Reason>
 <!-- Reason for the withdrawal of the Flavor offer -->
 <Message>string</Message>
 <!-- It is possibile to add other fields for detailed reasons if needed -->
 </Reason>
 </WithdrawMessage>

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 41 of 74

2.3.4 Implementation

The Discovery Controller implements a state machine to manage all the operations and
phases involved. The following figure shows the state diagram for the global discovery
process.

FIGURE 8: DISCOVERY STATE DIAGRAMS

• The three main states are idle (starting state), solved (final/success state) and running
(when the actual discovery is in progress).

• The system also uses two more states (failed and timed out) to manage any error that
may occur during the discovery process.

For example, the discovery may transition into a state error if:

• the whole discovery process has expired before finding a candidate;

• no flavours are found to fulfil the consumer requests;

• another consumer has purchased the found flavour (i.e., the flavour is not available
anymore);

• any other problem/error.

The discovery process is implemented in a class called Solver, that implements all the logic
to try to “solve” all the discovery phases (from the research of the resources, to the
reservation, purchase and creation and instantiation of the node).

The whole discovery process however is composed of several subtasks, each one
representing a particular phase.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 42 of 74

The main phases (shown in the following figure) are:

• FindCandidate: during this phase, the discovery system finds a candidate node that
fulfil the consumer requirements (the flavour);

• ReserveAndBuy: this phase starts if a flavour is found and the consumer decides to
proceed with the reservation and purchase. This phase also manages all the possible
conflicts to avoid the same node to be reserved/purchased by more than one
consumer;

• Consume: in this phase the node is actually instantiated and deployed on the cluster,
and is made available for usage.

Any error that may occur during each phase lead to an error that move all the discovery
phase to an error state

FIGURE 9: DISCOVERY CONTROLLER PHASES

After the discovery has been completed, the node has been created/deployed, and is ready
for usage.

Optionally, if not needed anymore, the consumer can request a teardown operation to
destroy the node and release the resources. These two phases have been represented in
the picture to increase the comprehension of the mechanism, even if they are not part of the
discovery process.

Each discovery phase is implemented with a particular object/class that internally
implements another state machine, and each phase-level state machine follows the same
diagram of the main state machine as the discovery controller, as visible in the following
figure.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 43 of 74

FIGURE 10: STATE DIAGRAM FOR SPECIFIC OBJECT/PHASE/SUBTASK

These state machines of course are related to the main state machine at discovery controller
level, so for example:

• if the solver is in Idle state, all the sub-phases are also in Idle state;

• if the solver is in Solved state, all the sub-phases are also in Solved state;

• the situation is more complex when the discovery (solver) is in Running state, because,
internally, the solver manages the specific subtasks/subphases that can assume
different states, depending on the outcome of the phase itself or other correlated
phases.

The following picture represents a simplified diagram of the relationship between the
phases and their states.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 44 of 74

FIGURE 11: SOLVER PHASES AND STATES

We also have to consider that the three subphases FindCandidate, ReserveAndBuy and
Consume, managed by the solver/discovery, may need to perform remote operations, by
using REAR, Liqo, or other specific protocols or APIs.

For example:

• the FindCandidate phase as first operation, searches for a local node (flavour) that
meets the consumer requirements but, if no suitable node is found locally, it uses the
REAR controller to forward the same search on remote FLUIDOS Nodes;

• the ReserveAndBuy phase uses the REAR controller to reserve the node (making it
unavailable for other consumers), and, if reservation is completed successfully, it
continues to next subphase, to complete the purchase operation (creating the
contract);

• the Consume phase calls the Peering functions (ForeignCluster::PeerWithCluster) to
actually create the Liqo node.

Also, the remote phases (that uses REAR and Liqo controllers) implements state machines,
so the whole discovery process creates a hierarchy of interdependent states that has the
Solver/discovery at the top level, and goes down to a second level for specific tasks
operating on local node, and a third level for remote operations (REAR and Liqo).

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 45 of 74

FIGURE 12: PHASES HIERARCHY

Each one of these phases in the hierarchy follows the same state diagram represented in
Picture 3, but the change of its state can be triggered by either the phase itself or as result
of an operation performed by one of its ancestor or child phases.

So, a parent phase can trigger the change of state of one of its child phases from idle to
running, and the result of the children propagates up to its ancestors.

All the phases/subphases controllers maintain the right coherence between parent/children
phases avoiding inconsistent or confusing states (i.e., a subphase cannot be in running state
if parent phase is not running).

For example, when the remote reservation operation is in progress, the Solver,
ReserveAndBuy and Reservation phases are all in a Running state, but if the Reservation
(level 3) fails, it changes its state to Failed and also propagate the change of state to its
ancestor phases (ReserveAndBuy and Solver) from Running to Failed.

The following picture shows a simplified diagram of the states of all the phases with the
main actions that triggers a state change to a phase, to an ancestor phase, or to a child
phase:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 46 of 74

FIGURE 13: SOLVER PHASES AND STATES (LOCAL AND REMOTES)

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 47 of 74

3 ABSTRACTIONS AND MODELS

3.1 INTRODUCTION

The activities in T3.2 focused on defining a common knowledge base for offering and
acquiring resources. This is required because of the various actors operating within the
space, in several occasions lacking a common vocabulary for the specification of
requirements and resources. To do that, we relied on the standard practice of defining one
or more ontologies for characterizing data and relationships within the FLUIDOS
architecture.

Ontologies are a formal way to describe taxonomies and classification networks, essentially
defining the structure of knowledge for various domains: the nouns representing classes of
objects and the verbs representing relations between the objects.

The most well-known ontologies are the ones defined by the World Wide Web Consortium
(W3C) to allow the creation of the so-called Semantic Web, also known as Linked Data. W3C
published along the years several standards about formal languages for data and
relationships description, and formal reasoning methods.

The main standards we want to reference here are:

• the Resource Description Framework (RDF)3, a general framework for representing
interconnected data on the web. RDF statements are used for describing and
exchanging metadata, which enables standardized exchange of data based on
relationships. RDF is used to integrate data from multiple sources.

• RDF Schema (Resource Description Framework Schema, variously abbreviated as
RDFS, RDF(S), RDF-S, or RDF/S)4, a set of classes with certain properties using the RDF
extensible knowledge representation data model, providing basic elements for the
description of ontologies.

• the Web Ontology Language (OWL)5, a family of knowledge representation languages
for authoring ontologies.

• Turtle, a textual syntax for RDF that allows an RDF graph to be completely written in a
compact and natural text form, with abbreviations for common usage patterns and
datatypes. Turtle provides levels of compatibility with the N-Triples format as well as
the triple pattern syntax of the SPARQL W3C Recommendation.

3 https://www.w3.org/TR/rdf12-concepts/

4 https://www.w3.org/wiki/RDFS

5 https://www.w3.org/OWL/

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 48 of 74

3.2 ONTOLOGIES

Namely, in T3.2 we leverage RDF, RDFS, and OWL for the definition of two main ontologies,
which are publicly available in a repository called [fluidos-project/WP3_6-ontology].

3.2.1 Kubernetes

The first one describes Kubernetes data model, mainly the manifest language, in a formal
manner. This ontology is machine generated, using a python script available in the utility
directory of the repository.

This ontology is instrumental as a bridge between the resources offered by each FLUIDOS
node, which we remind corresponds to a Kubernetes cluster consisting of one or more
Kubernetes nodes, and the languages being developed to express user requirements.

This ontology contains the formal description of the existing relationships between
(Kubernetes) nodes, pods, deployments, and the various components existing within a
standard Kubernetes environment.

FIGURE 14: KUBERNETES ONTOLOGY VISUAL REPRESENTATION

3.2.2 FLUIDOS

The second ontology developed as part of this effort formally characterises FLUIDOS
concepts. In its first version, the FLUIDOS ontology represents the architectural concepts
developed in WP2 and implemented in WP3.

Please, refer to D2.1 and REAR protocol description for a more in-depth analysis of the
mentioned architectural components.

https://github.com/fluidos-project/WP3_6-ontology

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 49 of 74

Moreover, the ontology is also an attempt to the formal characterisation of the concept of
intent. Within FLUIDOS, an intent is a somehow defined user request. We here use the term
"somehow" because according to interaction with use cases provided, both within FLUIDOS
and prospective ones for the open calls, such a term has a very broad range of
interpretation.

The definition spans from a simple set of requests in terms of resources (memory, CPU, etc.),
to vague requests of high-level services (a SQL99 compatible database), passing through
measurable request for application and infrastructure performances (latency, throughput,
etc.) or to general availability, resilience, and compliance (.9 availability, to be HIPAA6
compliant).

Current definition of intent attempts to capture such a requirement by leveraging the
“flavour” concept for resource offering and demanding, alongside service requests, to
express needs for databases or application servers for example, and ancillary information
like compliance and geographical requirements.

Subsequent work will define mapping between established languages, like the Medium-
level security policy language (MSPL) [15] used by partners in WP4 and WP5 or the intent
definition from Intel, and FLUIDOS concepts.

FIGURE 15: FLUIDOS ONTOLOGY VISUAL REPRESENTATION

6 https://www.cdc.gov/phlp/publications/topic/hipaa.html

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 50 of 74

4 EDGE ARCHITECTURES

As presented in D2.1, through tethering in FLUIDOS edge architecture, data processing and
analysis closer to the source reduces latency and enhances overall system efficiency in
regard to management, data processing and communication with edge nodes (Meta-edge)
and IoT devices (Deep-edge and Micro-edge). The following figure depicts the overall
architecture that enables FLUIDOS nodes to leverage the power and capacity of edge
devices.

FIGURE 16: FLUIDOS EDGE ARCHITECTURE OVERVIEW

In FLUIDOS Edge, we leverage the Kubernetes custom resources to establish
communication between the cloud and the Meta-edge, and to provide edge resource
management, by leveraging KubeEdge (we use v1.14 as the baseline) functionality.
KubeEdge provides the following functionality:

• Deep-edge and Micro-edge device management.

• Cloud to Edge and Edge to Cloud traffic routing.

• Kubernetes objects (e.g., devices, pods, etc.) synchronization between the Cloud and
the Edge layers.

However, the vanilla version of KubeEdge has many limitations, including, the limited
support of the well-known IoT protocols such as LoRA, sigfox, MATTER etc. For this reason,
FLUIDOS provides uniformity to manage the heterogeneity of IoT Edge devices by
improving and extending several components of the vanilla KubeEdge. Furthermore,
FLUIDOS introduces novel features to enable the sharing of EdgeIoT resources and

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 51 of 74

computations performed at the edge among different application executed at the cloud
level. Namely, these improvements and extensions are the following:

• Cloud to Edge and Edge to Cloud traffic routing with software multicast support

• Uniformity to manage the heterogeneity of the leaf edge device (LED)

Related guides and source code is available at the FLUIDOS GitHub project:
https://github.com/fluidos-project/fluidos-edge.

4.1 CLOUD LAYER

A thorough guide for properly installing and configuring the cloud layer can be found at the
FLUIDOS GitHub project:

https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#cloud-
layer-installation--configuration

4.1.1 Custom Resources

Device Management

Device models are used as templates to describe LEDs in a uniform and abstract way
according to the openAPIv3Schema.

This CRD enables a device model, which is a schema for the device model API.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.6.2
 creationTimestamp: null
 name: devicemodels.devices.kubeedge.io
 spec:
 group: devices.kubeedge.io
 names:
 kind: DeviceModel
 listKind: DeviceModelList
 plural: devicemodels
 singular: devicemodel
 scope: Namespaced
 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 description: DeviceModel is the Schema for the device model API
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
representation of an object. Servers should convert recognized schemas to the
latest internal value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#resources'

https://github.com/fluidos-project/fluidos-edge
https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#cloud-layer-installation--configuration
https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#cloud-layer-installation--configuration

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 52 of 74

 type: string
 kind:
 description: 'Kind is a string value representing the REST resource
this object represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#types-kinds'
 type: string
 metadata:
 type: object
 spec:
 description: DeviceModelSpec defines the model / template for a
device. It is a blueprint which describes the device capabilities and access
mechanism via property visitors.
 properties:
…
 type: object
 type: object
 served: true
 storage: true
 status:
 acceptedNames:
 kind: ""
 plural: ""
 conditions: []
 storedVersions: []

Device CRDs are used for applying a device instance, which a schema for the device API.
This kind of CRD is used to describe in detail information related to specific devices, such as
brand, model, capabilities, etc., within the limits and possibilities described by the model.
At Deep/Micro Edge Device Commands subsection we provide an example where we
create two devices based on different type of flavours.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.6.2
 creationTimestamp: null
 name: devices.devices.kubeedge.io
 spec:
 group: devices.kubeedge.io
 names:
 kind: Device
 listKind: DeviceList
 plural: devices
 singular: device
 scope: Namespaced
 versions:
 - name: v1alpha2
 schema:
 openAPIV3Schema:
 description: Device is the Schema for the devices API
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
representation of an object. Servers should convert recognized schemas to the
latest internal value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#resources'

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 53 of 74

 type: string
 kind:
 description: 'Kind is a string value representing the REST resource
this object represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#types-kinds'
 type: string
 metadata:
 type: object
 spec:
 description: DeviceSpec represents a single device instance. It is an
instantation of a device model.
 properties:
 data:
 description: Data section describe a list of time-series
properties which should be processed on edge node.
 properties:
…
 served: true
 storage: true
 status:
 acceptedNames:
 kind: ""
 plural: ""
 conditions: []
 storedVersions: []

Traffic Routing

Traffic routing CRDs provide all the required information (rules) for routing traffic from the
edge to the cloud and vice versa.

Here is the CRD for applying a router endpoint, which a description of the router endpoint
type.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 name: ruleendpoints.rules.kubeedge.io
 spec:
 group: rules.kubeedge.io
 versions:
 - name: v1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 ruleEndpointType:
 description: ruleEndpointType is a string value representing
rule-endpoint type. its value is one of rest/eventbus/servicebus.
 type: string
 enum:
 - rest
 - eventbus

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 54 of 74

 - servicebus
 properties:
 description: properties is not required except for servicebus
rule-endpoint type. It is a map representing rule-endpoint properties. When
ruleEndpointType is servicebus, its value is {"service_port":"8080"}.
 type: object
 additionalProperties:
 type: string
 required:
 - ruleEndpointType
 scope: Namespaced
 names:
 plural: ruleendpoints
 singular: ruleendpoint
 kind: RuleEndpoint
 shortNames:
 - re

Here is the CRD for applying a router rule, which is a rule for routing the traffic coming from
the edge endpoint to cloud endpoints.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 name: rules.rules.kubeedge.io
 spec:
 group: rules.kubeedge.io
 versions:
 - name: v1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 source:
 description: source is a string value representing where the
messages come from. Its value is the same with ruleendpoint name. For example, my-
rest or my-eventbus.
 type: string
 sourceResource:
 description: is a map representing the resource info of source.
For rest rule-endpoint type its value is {"path":"/test"}. For eventbus
ruleendpoint type its value is {"topic":"<user define string>","node_name":"edge-
node"}
 type: object
 additionalProperties:
 type: string
 target:
 description: target is a string value representing where the
messages go to. its value is same with ruleendpoint name. For example, my-eventbus
or my-rest or my-servicebus.
 type: string
 targetResource:
 description: targetResource is a map representing the resource
info of target. For rest rule-endpoint type its value is
{"resource":"http://a.com"}. For eventbus ruleendpoint its value is
{"topic":"/test"}. For servicebus rule-endpoint type its value is
{"path":"/request_path"}.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 55 of 74

 type: object
 additionalProperties:
 type: string
 required:
 - source
 - sourceResource
 - target
 - targetResource
 status:
 type: object
 properties:
 successMessages:
 type: integer
 failMessages:
 type: integer
 errors:
 items:
 type: string
 type: array
 scope: Namespaced
 names:
 plural: rules
 singular: rule
 kind: Rule

Object Synchronization

It is essential to keep the state and status of the various instantiated objects in
synchronization between the cloud and the edge layer, e.g., device status.

Here is the CRD for applying name-spaced objects synchronization.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.6.2
 creationTimestamp: null
 name: objectsyncs.reliablesyncs.kubeedge.io
 spec:
 group: reliablesyncs.kubeedge.io
 names:
 kind: ObjectSync
 listKind: ObjectSyncList
 plural: objectsyncs
 singular: objectsync
 scope: Namespaced
 versions:
 - name: v1alpha1
 schema:
 openAPIV3Schema:
 description: ObjectSync stores the state of the namespaced object that
was successfully persisted to the edge node. ObjectSync name is a concatenation the
node name which receiving the object and the object UUID.
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
representation of an object. Servers should convert recognized schemas to the
latest internal value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#resources'

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 56 of 74

 type: string
 kind:
 description: 'Kind is a string value representing the REST resource
this object represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#types-kinds'
 type: string
 metadata:
 type: object
 spec:
 description: ObjectSyncSpec stores the details of objects that
persist to the edge.
 properties:
 objectAPIVersion:
 description: ObjectAPIVersion is the APIVersion of the object
that was successfully persist to the edge node.
 type: string
 objectKind:
 description: ObjectType is the kind of the object that was
successfully persist to the edge node.
 type: string
 objectName:
 description: ObjectName is the name of the object that was
successfully persist to the edge node.
 type: string
 type: object
 status:
 description: ObjectSyncSpec stores the resourceversion of objects
that persist to the edge.
 properties:
 objectResourceVersion:
 description: ObjectResourceVersion is the resourceversion of the
object that was successfully persist to the edge node.
 type: string
 type: object
 type: object
 served: true
 storage: true
 subresources:
 status: {}
 status:
 acceptedNames:
 kind: ""
 plural: ""
 conditions: []
 storedVersions: []

Here is the CRD for applying non-name-spaced objects synchronization.

 apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.6.2
 creationTimestamp: null
 name: clusterobjectsyncs.reliablesyncs.kubeedge.io
 spec:
 group: reliablesyncs.kubeedge.io
 names:
 kind: ClusterObjectSync
 listKind: ClusterObjectSyncList

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 57 of 74

 plural: clusterobjectsyncs
 singular: clusterobjectsync
 scope: Cluster
 versions:
 - name: v1alpha1
 schema:
 openAPIV3Schema:
 description: ClusterObjectSync stores the state of the cluster level,
nonNamespaced object that was successfully persisted to the edge node.
ClusterObjectSync name is a concatenation of the node name which receiving the
object and the object UUID.
 properties:
 apiVersion:
 description: 'APIVersion defines the versioned schema of this
representation of an object. Servers should convert recognized schemas to the
latest internal value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#resources'
 type: string
 kind:
 description: 'Kind is a string value representing the REST resource
this object represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#types-kinds'
 type: string
 metadata:
 type: object
 spec:
 description: ObjectSyncSpec stores the details of objects that
persist to the edge.
 properties:
 objectAPIVersion:
 description: ObjectAPIVersion is the APIVersion of the object
that was successfully persist to the edge node.
 type: string
 objectKind:
 description: ObjectType is the kind of the object that was
successfully persist to the edge node.
 type: string
 objectName:
 description: ObjectName is the name of the object that was
successfully persist to the edge node.
 type: string
 type: object
 status:
 description: ObjectSyncSpec stores the resource version of objects
that persist to the edge.
 properties:
 objectResourceVersion:
 description: ObjectResourceVersion is the resource version of the
object that was successfully persist to the edge node.
 type: string
 type: object
 type: object
 served: true
 storage: true
 subresources:
 status: {}
 status:
 acceptedNames:
 kind: ""
 plural: ""
 conditions: []

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 58 of 74

 storedVersions: []

4.1.2 Custom Controllers

CloudHub

CloudHub module connects the controllers and the Meta-edge over web-socket and QUIC
protocol. The protocol is selected by EdgeHub. CloudHub's function is to enable the
communication between edge and the Controllers.

CloudHub The main functions performed by are:

• Serve messages coming from the Meta-edge.

• Forward messages to the Meta-edge.

EdgeController

EdgeController bridges the Kubernetes API server and EdgeCore. Its main functionality is to
synchronise objects’ state and status, serving updates coming from both the cloud and the
Meta-edge layer.

DeviceController

The DeviceController provides device management. It synchronizes devices’ status and
metadata updates between the cloud and the Deep/Micro-edge, by leveraging Kubernetes
CRDs.

Router

This controller can be used to route traffic from the Edge layers to other Cloud applications
or vice versa, based on rules. We have extended its functionality to support data multicast in
the Edge to Cloud direction and also to process filtering rules, i.e., which data to forward to
which endpoint.

4.2 EDGE LAYER

A thorough guide for properly installing and configuring the edge layer can be found at the
FLUIDOS GitHub project:

https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#meta-
edge-layer-installation--configuration

https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#meta-edge-layer-installation--configuration
https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide#meta-edge-layer-installation--configuration

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 59 of 74

4.2.1 Modules

At the Meta-edge layer, the EdgeCore enables proper integration with the cloud layer and
it consists of the following entities.

EdgeD

EdgeD enables deploying containerized workloads (pods) at the Meta-edge, serving cloud
layer commands.

EventBus

The EventBus is an interface that provides proper communication with an MQTT broker.

DeviceTwin

The DeviceTwin maintains information related to Deep-edge and Micro-edge devices and is
responsible for synchronize this information between the cloud and the Meta-Edge.

EdgeHub

The EdgeHub links the cloud and the Meta-edge layers, after establishing a connection with
the CloudHub.

MetaManager

The MetaManager acts as a glue layer between EdgeD and EdgeHub. Also, it maintains
metadata using a lightweight database.

IoT Device Manager

This newly introduced module can connect to and manage more complex types of IoT
networks, where their higher-level entity is running at the Meta-edge in a containerized
fashion. One such example is a LoRaWAN network, where the LoRaWAN servers or at least
the application server are/is running inside a pod at the Meta-edge layer.

Mapper

The Mapper is an application that connects to and controls devices at the Deep-edge and
the Micro-edge. We have enhanced the Mapper’s functionality to be able to request from
the LEDs to serve the system based on the flavour described during device creation.
Moreover, we have implemented the support to associate data with multiple recipients, i.e.,
publish (at higher layers) data at multiple topics.

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 60 of 74

4.3 APIS

A set of API endpoints enables accessing the custom resources, i.e., devices and router
rules. These are the available endpoints:

• /apis/devices.kubeedge.io/v1alpha2

• /apis/rules.kubeedge.io/v1/

4.3.1 Deep/Micro Edge Device Commands

By accessing /apis/devices.kubeedge.io/v1alpha2 API endpoint, several commands (over
HTTP) can be invoked to manage the Deep-edge and Micro-edge devices. These
commands target device model and device objects. Device model creation should always
precede device creation, and every device should be deleted before deleting a device
model. The available commands are:

• Get

• List

• Create

• Patch

• Delete

List Device & Device Model

List device models example:

 GET https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/namespaces/
{namespace}/devicemodels

Response body:

 {
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "devices.kubeedge.io/v1alpha2",
 "kind": "DeviceModel",
 "metadata": {
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"devices.kubeedge.io/v1alpha2\",\"kind\":\"DeviceModel\",\"metada
ta\":{\"annotations\":{},\"name\":\"bluenrg\",\"namespace\":\"default\"},\"spec\":{
\"properties\":[{\"description\":\"temperature and atmospheric
pressure\",\"name\":\"environmental\",\"type\":{\"int\":{\"accessMode\":\"ReadOnly\
"}}}]}}\n"
 },
 "creationTimestamp": "2023-10-30T12:44:12Z",
 "generation": 1,
 "name": "bluenrg",
 "namespace": "default",

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 61 of 74

 "resourceVersion": "836065",
 "uid": "b4b72156-ae58-4006-93ef-29ad5b5aae82"
 },
 "spec": {
 "properties": [
 {
 "description": "temperature and atmospheric pressure",
 "name": "environmental",
 "type": {
 "int": {
 "accessMode": "ReadOnly"
 }
 }
 }
]
 }
 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": ""
 }
 }

List devices example:

 GET https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/namespaces/
{namespace}/devices

Response body:

 {
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "devices.kubeedge.io/v1alpha2",
 "kind": "Device",
 "metadata": {
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"devices.kubeedge.io/v1alpha2\",\"kind\":\"Device\",\"metadata\":
{\"annotations\":{},\"labels\":{\"description\":\"Sensor-Tile-
Board\",\"manufacturer\":\"STMicroelectronics\",\"model\":\"STWINKT1B\"},\"name\":\
"bluenrg-instance-
01\",\"namespace\":\"default\"},\"spec\":{\"data\":{\"dataProperties\":[{\"metadata
\":{\"type\":\"integer\"},\"propertyName\":\"environmental\"}],\"dataTopic\":\"$ke/
events/device/+/data/update\"},\"deviceModelRef\":{\"name\":\"bluenrg\"},\"nodeSele
ctor\":{\"nodeSelectorTerms\":[{\"matchExpressions\":[{\"key\":\"\",\"operator\":\"
In\",\"values\":[\"edgian\"]}]}]},\"propertyVisitors\":[{\"bluetooth\":{\"character
isticUUID\":\"00140000000111e1ac360002a5d5c51b\",\"dataConverter\":{\"endIndex\":7,
\"orderOfOperations\":null,\"startIndex\":2}},\"collectCycle\":500000000,\"property
Name\":\"environmental\",\"reportCycle\":1000000000}],\"protocol\":{\"bluetooth\":{
\"macAddress\":\"CB:B8:C2:15:19:EF\"}}},\"status\":{\"twins\":[{\"propertyName\":\"
environmental\"}]}}\n"
 },
 "creationTimestamp": "2023-10-30T12:44:16Z",
 "generation": 1,
 "labels": {
 "description": "Sensor-Tile-Board",
 "manufacturer": "STMicroelectronics",

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 62 of 74

 "model": "STWINKT1B"
 },
 "name": "bluenrg-instance-01",
 "namespace": "default",
 "resourceVersion": "836071",
 "uid": "9928ce92-686d-45ed-9290-bf72897e1bfe"
 },
 "spec": {
 "data": {
 "dataProperties": [
 {
 "metadata": {
 "type": "integer"
 },
 "propertyName": "environmental"
 }
],
 "dataTopic": "$ke/events/device/+/data/update"
 },
 "deviceModelRef": {
 "name": "bluenrg"
 },
 "nodeSelector": {
 "nodeSelectorTerms": [
 {
 "matchExpressions": [
 {
 "key": "",
 "operator": "In",
 "values": [
 "edgian"
]
 }
]
 }
]
 },
 "propertyVisitors": [
 {
 "bluetooth": {
 "characteristicUUID": "00140000000111e1ac360002a5d5c51b",
 "dataConverter": {
 "endIndex": 7,
 "startIndex": 2
 }
 },
 "collectCycle": 500000000,
 "propertyName": "environmental",
 "reportCycle": 1000000000
 }
],
 "protocol": {
 "bluetooth": {
 "macAddress": "CB:B8:C2:15:19:EF"
 }
 }
 },
 "status": {
 "twins": [
 {
 "propertyName": "environmental"
 }
]
 }

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 63 of 74

 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": ""
 }
 }

Get Device & Device Model

Get a specific device model example:

 GET https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/namespaces/
{namespace}/devicemodels/{device model name}

Get a specific device example:

 GET https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/namespaces/
{namespace}/devices/{device name}

Create Device & Device Model

Create a device model example:

 POST https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devicemodels

Request header:

 'Content-Type: application/yaml'

Request body sample:

 apiVersion: devices.kubeedge.io/v1alpha2
 kind: DeviceModel
 metadata:
 name: bluenrg
 namespace: default
 spec:
 properties:
 - name: temperature
 description: environmental temperature
 type:
 - int:
 accessMode: ReadOnly
 - name: pressure
 description: atmospheric pressure
 type:
 - int:
 accessMode: ReadOnly
 - name: accelerometer
 description: acceleration X Y Z values
 type:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 64 of 74

 - float:
 accessMode: ReadOnly
 - float:
 accessMode: ReadOnly
 - float:
 accessMode: ReadOnly

Create a device example:

 POST https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devices

Request header:

 'Content-Type: application/yaml'

Request body

 As described at the following two examples device object samples

Here are two examples where we instantiate device resources based on different flavour
resource parameters. Based on the flavour parameters, the first one is instantiated to
periodically send data collected from environmental sensors (e.g., temperature, pressure),
while the second one is instantiated to periodically send data collected from motion sensors
(e.g., accelerometer).

Example 1

This the first flavour resource sample that describes the interest for a device that can provide
readings from temperature and pressure sensors.

 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Flavour
 metadata:
 creationTimestamp: "2023-11-16T16:13:52Z"
 generation: 2
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 resourceVersion: "1534"
 uid: 5ce9f378-014e-4cb4-b173-5a3530d8f78d
 spec:
 characteristics:
 architecture: armv7
 cpu: M0+
 ephemeral-storage: "0"
 gpu: "0"
 mpu: "0"
 memory: “6144”
 persistent-storage: "0"
 crypto-accelerator: # crypto-accelerator list
 secure-element: # secure element list
 sensor: # sensors list
 - type: temperature
 - type: pressure

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 65 of 74

 mems: # mems list
 actuator: # actuator list
 optionalFields:
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"
 memoryStep: 100Mi
 price:
 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos

This is a device resource sample aligned with the flavour described above.

 apiVersion: devices.kubeedge.io/v1alpha2
 kind: Device
 metadata:
 name: bluenrg-instance-01
 labels:
 description: Sensor-Tile-Board
 manufacturer: STMicroelectronics
 model: STWINBX1
 spec:
 deviceModelRef:
 name: bluenrg
 protocol:
 bluetooth:
 macAddress: "CB:B8:C2:15:19:EF" #MAC address of the IoT device to pair with
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: ''
 operator: In
 values:
 - edgian #pls give your edge node name
 propertyVisitors:
 - propertyName: temperature
 collectCycle: 500000000
 reportCycle: 1000000000
 bluetooth:
 characteristicUUID: 00140000000111e1ac360002a5d5c51b
 dataConverter:
 startIndex: 2
 endIndex: 4
 orderOfOperations:
 - propertyName: pressure
 collectCycle: 500000000
 reportCycle: 1000000000
 bluetooth:
 characteristicUUID: 00140000000111e1ac360002a5d5c51c

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 66 of 74

 dataConverter:
 startIndex: 5
 endIndex: 7
 orderOfOperations:
 data:
 dataTopic: "$ke/events/device/+/data/update"
 dataProperties:
 - propertyName: temperature
 metadata:
 - type: integer
 - propertyName: pressure
 metadata:
 - type: integer
 status:
 twins:
 - propertyName: temperature
 - propertyName: pressure

Example 2

This the second flavour resource sample that describes the interest for a device that can
provide readings from an accelerometer.

 apiVersion: nodecore.fluidos.eu/v1alpha1
 kind: Flavour
 metadata:
 creationTimestamp: "2023-11-16T16:13:52Z"
 generation: 2
 name: fluidos.eu-k8s-fluidos-bba29928
 namespace: fluidos
 resourceVersion: "1534"
 uid: 5ce9f378-014e-4cb4-b173-5a3530d8f78d
 spec:
 characteristics:
 architecture: armv7
 cpu: M0+
 ephemeral-storage: "0"
 gpu: "0"
 mpu: "0"
 memory: “6144”
 persistent-storage: "0"
 crypto-accelerator: # crypto-accelerator list
 secure-element: # secure element list
 sensor: # sensors list
 mems: # mems list
 - type: accelerometer
 actuator: # actuator list
 optionalFields:
 workerID: fluidos-provider-worker
 owner:
 domain: fluidos.eu
 ip: 172.18.0.7:30001
 nodeID: 46ltws9per
 policy:
 aggregatable:
 maxCount: 0
 minCount: 0
 partitionable:
 cpuMin: "0"
 cpuStep: "1"
 memoryMin: "0"

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 67 of 74

 memoryStep: 100Mi
 price:
 amount: ""
 currency: ""
 period: ""
 providerID: 46ltws9per
 type: k8s-fluidos

This is a device resource sample aligned with the flavour described above.

 apiVersion: devices.kubeedge.io/v1alpha2
 kind: Device
 metadata:
 name: bluenrg-instance-02
 labels:
 description: Sensor-Tile-Board
 manufacturer: STMicroelectronics
 model: STWINBX1
 spec:
 deviceModelRef:
 name: bluenrg
 protocol:
 bluetooth:
 macAddress: "CB:B8:C2:3F:19:EF" #MAC address of the IoT device to pair with
 nodeSelector:
 nodeSelectorTerms:
 - matchExpressions:
 - key: ''
 operator: In
 values:
 - edgian #pls give your edge node name
 propertyVisitors:
 - propertyName: accelerometer
 collectCycle: 500000000
 reportCycle: 1000000000
 bluetooth:
 characteristicUUID: 00140000000111e1ac240002a5d5c51d
 data:
 dataTopic: "$ke/events/device/+/data/update"
 dataProperties:
 - propertyName: accelerometer
 metadata:
 - type: float
 - type: float
 - type: float
 status:
 twins:
 - propertyName: accelerometer

Patch Device & Device Model

Patch a device model example:

 PATCH https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devicemodels/{model name}

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 68 of 74

Request header:

 'Content-Type: application/merge-patch+json'

Request body sample:

 {
 "spec": {
 "properties": [
 {
 "description": "temperature, humidity and atmospheric pressure"
 }
]
 }
 }

Patch a device example:

 PATCH https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devices/{device name}

Request header:

 'Content-Type: application/merge-patch+json'

Request body sample:

 {
 "spec": {
 "deviceModelRef": {
 "name": "bluenrg"
 }
 }
 }

Delete Device & Device Model

Delete a device model example:

 DELETE https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devicemodels/{model name}

Delete a device example:

 DELETE https://{API Server URL}:{port}/apis/devices.kubeedge.io/v1alpha2/
namespaces/{namespace}/devices/{device name}

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 69 of 74

4.3.2 Router Commands

By accessing /apis/rules.kubeedge.io/v1/ API endpoint, several commands (over HTTP) can
be invoked to manage the Deep-edge and Micro-edge devices. These commands target
device model and device objects. Device model creation should always precede device
creation, and every device should be deleted before deleting a device model. The available
commands are:

• Get

• List

• Create

• Patch

• Delete

List Rules & Rule Endpoints

List rule endpoints example:

 GET https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/ruleendpoints

Response body:

 {
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "rules.kubeedge.io/v1",
 "kind": "RuleEndpoint",
 "metadata": {
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"rules.kubeedge.io/v1\",\"kind\":\"RuleEndpoint\",\"metadata\":{\
"annotations\":{},\"labels\":{\"description\":\"test\"},\"name\":\"fluidos-
rest\",\"namespace\":\"default\"},\"spec\":{\"properties\":{},\"ruleEndpointType\":
\"rest\"}}\n"
 },
 "creationTimestamp": "2023-11-21T22:23:23Z",
 "generation": 1,
 "labels": {
 "description": "test"
 },
 "name": "fluidos-rest",
 "namespace": "default",
 "resourceVersion": "3318606",
 "uid": "7ac3f2d6-4c69-475f-aaec-dcaa165f3fac"
 },
 "spec": {
 "properties": {},
 "ruleEndpointType": "rest"
 }
 }
],
 "kind": "List",

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 70 of 74

 "metadata": {
 "resourceVersion": ""
 }
 }

List rules example:

 GET https://{API Server URL}:{port}/ apis/rules.kubeedge.io/v1/namespaces/
{namespace}/rules

Response body:

 {
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "rules.kubeedge.io/v1",
 "kind": "Rule",
 "metadata": {
 "annotations": {
 "kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"rules.kubeedge.io/v1\",\"kind\":\"Rule\",\"metadata\":{\"annotat
ions\":{},\"labels\":{\"description\":\"Receive_topic_btled1_tp_forward_to_targets\
"},\"name\":\"rule-eventbus-rest-bt-led-1-
tp\",\"namespace\":\"default\"},\"spec\":{\"source\":\"fluidos-
eventbus\",\"sourceResource\":{\"node_name\":\"edgian3\",\"topic\":\"cloudapp-
tp/bt-led-1\"},\"target\":\"fluidos-
rest\",\"targetResource\":{\"resource\":\"http://10.0.2.68:4487/telegraf,http://10.
0.2.69:4487/telegraf\"}}}\n"
 },
 "creationTimestamp": "2023-11-21T22:24:36Z",
 "generation": 1,
 "labels": {
 "description": "Receive_topic_btled1_tp_forward_to_targets"
 },
 "name": "rule-eventbus-rest-bt-led-1-tp",
 "namespace": "default",
 "resourceVersion": "3318701",
 "uid": "21b16d0c-0035-4260-b78a-ee32af21335a"
 },
 "spec": {
 "source": "fluidos-eventbus",
 "sourceResource": {
 "node_name": "edgian3",
 "topic": "cloudapp-tp/bt-led-1"
 },
 "target": "fluidos-rest",
 "targetResource": {
 "resource":
"http://10.0.2.68:4487/telegraf,http://10.0.2.69:4487/telegraf"
 }
 }
 }
],
 "kind": "List",
 "metadata": {
 "resourceVersion": ""
 }
 }

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 71 of 74

Get Rules & Rule Endpoints

Get a specific rule endpoint example:

 GET https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/ruleendpoints/{rule endpoint name}

Get a specific rule endpoint example:

 GET https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/rules/{rule name}

Create Rules & Rule Endpoints

Create a rule endpoint example:

 POST https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/ruleendpoints

Request header:

 'Content-Type: application/yaml'

Request body sample:

 apiVersion: rules.kubeedge.io/v1
 kind: RuleEndpoint
 metadata:
 name: fluidos-rest
 labels:
 description: test
 spec:
 ruleEndpointType: "rest"
 properties: {}

Create a rule example:

 POST https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/rules

Request header:

 'Content-Type: application/yaml'

Request body sample:

 apiVersion: rules.kubeedge.io/v1
 kind: Rule
 metadata:

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 72 of 74

 name: rule-eventbus-rest-bt-led-1-tp
 labels:
 description: Receive_topic_btled1_tp_forward_to_targets
 spec:
 source: "fluidos-eventbus"
 sourceResource: {"topic": "cloudapp-tp/bt-led-1","node_name": "edgian3"}
 target: "fluidos-rest"
 targetResource:
{"resource":"http://10.0.2.68:4487/telegraf,http://10.0.2.69:4487/telegraf"}

Patch Rules & Rule Endpoints

Patch a rule endpoint example:

 PATCH https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/ruleendpoints/{rule endpoint name}

Request header:

 'Content-Type: application/merge-patch+json'

Request body sample:

 {
 "spec": {
 "ruleEndpointType": "eventbus"
 }
 }

Patch a device example:

 PATCH https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/rules/{rule name}

Request header:

 'Content-Type: application/merge-patch+json'

Request body sample:

 {
 "spec": {
 "target": "fluidos-eventbus"
 }
 }

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 73 of 74

Delete Rules & Rule Endpoints

Delete a rule endpoint example:

 DELETE https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/ruleendpoints/{rule endpoint name}

Delete a device example:

 DELETE https://{API Server URL}:{port}/apis/rules.kubeedge.io/v1/namespaces/
{namespace}/rules/{rule name}

FLUIDOS | D3.1: Modular and extensible FLUIDOS node (V1)

© 2022-2025 FLUIDOS Page 74 of 74

REFERENCES

[1] Booking Connectivity APIs, https://connect.booking.com/user_guide/site/en-
US/user_guide.html

[2] Ticketmaster developer docs, https://developer.ticketmaster.com/

[3] Zhang, Lixia, et al. "RSVP: A new resource reservation protocol." IEEE network 7.5
(1993): 8-18

[4] "MRSVP: A resource reservation protocol for an integrated services network with mobile
hosts." Wireless Networks 7 (2001): 5-19

[5] Wang, Xin, and Henning Schulzrinne. "RNAP: A resource negotiation and pricing
protocol." Transit 6.B7 (1999): B8

[6] Awduche, Daniel, et al. RSVP-TE: extensions to RSVP for LSP tunnels. No. rfc3209. 2001

[7] Berger, Lou. Generalized multi-protocol label switching (GMPLS) signaling resource
reservation protocol-traffic engineering (RSVP-TE) extensions. No. rfc3473. 2003

[8] Czajkowski, Karl, et al. "SNAP: A protocol for negotiating service level agreements and
coordinating resource management in distributed systems." Job Scheduling Strategies
for Parallel Processing: 8th International Workshop, JSSPP 2002 Edinburgh, Scotland,
UK, July 24, 2002 Revised Papers 8. Springer Berlin Heidelberg, 2002

[9] Venugopal, Srikumar, Xingchen Chu, and Rajkumar Buyya. "A negotiation mechanism
for advance resource reservations using the alternate offers protocol." 2008 16th
Interntional Workshop on Quality of Service. IEEE, 2008

[10] Elmroth, Erik, and Johan Tordsson. "A grid resource broker supporting advance
reservations and benchmark-based resource selection." International Workshop on
Applied Parallel Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004

[11] Andrieux, Alain, et al. "Web services agreement specification (WSAgreement)." Open
grid forum. Vol. 128. No. 1. 2007

[12] Smith, Reid G. "The contract net protocol: High-level communication and control in a
distributed problem solver." IEEE Transactions on computers 29.12 (1980): 1104-1113

[13] GSMA Operator Platform Telco Edge Requirements 2022
https://www.gsma.com/futurenetworks/resources/ gsma-operator-platform-telco-edge-
requirements-2022/

[14] GSMA Operator Platform Group – East-Westbound Interface APIs
https://www.gsma.com/futurenetworks/resources/east-westbound-interface-apis/

[15] Matheu SN, Robles Enciso A, Molina Zarca A, Garcia-Carrillo D, Hernández-Ramos JL,
Bernal Bernabe J, Skarmeta AF. Security Architecture for Defining and Enforcing Security
Profiles in DLT/SDN-Based IoT Systems. Sensors (Basel). 2020 Mar 28;20(7):1882. doi:
10.3390/s20071882. PMID: 32231142; PMCID: PMC7180465

https://connect.booking.com/user_guide/site/en-US/user_guide.html
https://connect.booking.com/user_guide/site/en-US/user_guide.html
https://developer.ticketmaster.com/
https://www.gsma.com/futurenetworks/resources/
https://www.gsma.com/futurenetworks/resources/east-westbound-interface-apis/

