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Abstract The deployment of workloads in a distributed environment is known to be 
complex tasks, and it is even more complex when the system is expected to 
satisfy requirements in a dynamic context balancing factors like performance, 
resource consumption, and infrastructure and service costs. Thus, in a 
scenario like the one targeted by FLUIDOS. This deliverable presents the 
results of the main activities of WP4 for establishing when an application 
should leverage the continuum. These activities are grounded on formal 
definitions of user requirements in the form of intents. We further illustrate 
various research efforts leading to use-case driven algorithm for optimal 
workload placement using various techniques, including linear optimization, 
traditional machine learning, and deep neural networks. Finally, we present 
the initial work on how to foster collaboration between participants of the 
continuum by improving security and privacy formal guarantees with respect 
to distributed model training. 
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EXECUTIVE SUMMARY 

This deliverable summarizes the activities of Work Package 4, specifically Task 4.1 Task 4.2, 
and Task 4.3. The deliverable opens, in Section 1, contextualizing the activities of the tasks 
within both the overall project landscape, and with respect to the research questions that are 
driving innovation within the work package. 

After that, the deliverable focuses in Section 2, on the formal and informal definition of intent, 
i.e. the conceptual mechanism that allows users to characterize formal and informal 
constraints for workload execution. These constraints encompass both traditional resource 
requirements, including geographical location, and more advanced, high level, concepts such 
as performance requirements, compliance specifications, cost constraints, and more. We 
present a series of languages, both from the state of the art and proposals from FLUIDOS, for 
the definition of such constraints. These languages assume the existence of a conceptual 
mapping between them. A first version of this mapping exists. It has been created as part of 
FLUIDOS activities, specifically the ones described in D3.1. 

The deliverable illustrates concrete research outcomes, consisting of new algorithms, 
methodologies – both presented in Section 3.1 -, and concrete proof of concept 
implementations – illustrated in Section 3.2 - to satisfy the workload requirements a user can 
express through the previously introduced intent languages.  

The algorithms and methodologies presented focus on cost-oriented workload orchestration, 
refer to Section 3.1.1, latency-aware orchestration, refer to Section 3.1.2, high-level policy 
meta-orchestration, refer to Section 3.1.3, and finally a purely ML-based  meta orchestration, 
refer to Section 3.1.4. These different approaches are presented with various levels of detail 
and experimental evaluation depending on the maturity of the research. Nonetheless, they 
all demonstrate the feasibility of workload orchestration, or meta-orchestration, within the 
FLUIDOS continuum.  

Following the presentation of the more theoretical components of the work conducted within 
WP4, the deliverable focuses on the artifacts that are being provided to the community and 
to the users of the open calls. These artifacts are described in Section 3.2 where the two main 
approaches, policy-based and ML-based, are also contextualized within the FLUIDOS 
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architecture referred by the publicly available REAR protocol architecture1, and in deliverable 
D2.1. 

Finally, Section 4 presents a series of theoretical work aimed as foundational for the 
subsequent activities of Task 4.3. Namely, Section 4.2 and Section 4.3 present novel 
approaches to the application of privacy-enhancing technologies (PETs) to well-known 
techniques to train ML models in distributed settings, thus Federated Learning (FL). 

 

1 https://github.com/fluidos-project/REAR 
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1 INTRODUCTION 

The creation of a cloud-to-edge continuum, as the one envisioned by FLUIDOS requires 
several complex techniques to be coordinated at several levels. Some of the activities to 
achieve this ambitious goal, specifically the mechanics, or the “how” to establish a continuum, 
are addressed in other work packages. On the other hand, the activities of Work Package 4 
focus on identifying what a user would require leveraging resources within a cloud-to-edge 
continuum. This is a far from trivial task because it generally assumes a complete knowledge 
and understanding of users’ requirements. This information is generally not available, or there 
could be some potential issues in what a user specifies and what the system is able to provide, 
also considering potential misunderstanding of system capabilities and actual workload 
requirements from the user point of view. Therefore, WP4 focuses on exploring and evolving 
methodologies to allow users to specify workload requirements at various levels of 
abstraction. Traditionally, orchestration engines request a specific quantity of resources (e.g., 
number of CPUs or latency), a quantity range (e.g., min/max number of CPUs) or not 
specifying them at all, to support the appropriate placement of workloads. The existing variety 
of implementations aims to solve the issue of optimal workload deployment by means of rule-
based approaches, linear programming methods, and more. Machine Learning (ML) 
algorithms are accordingly employed by container orchestration systems for behaviour 
modelling and prediction of multi-dimensional performance metrics. Note how these tasks 
complement the work performed in WP6, where more attention is given to specific 
requirements and metrics, namely cost and energy. 

Once a user can specify workload and requirements there are more challenges to address. 
That is, the identification of the resources required for the system to satisfy the requirements 
for a specific workload, considering both locally available resources and those provided by 
other participants to the continuum. Again, this is a challenge as the optimal placement of a 
workload within a continuum might change as the continuum evolves. Namely, as workloads 
are executed, as resources are acquired and shared, conditions for optimality of a new, or 
even already running, workload might mutate. Thus, requiring the system to be flexible and 
to adapt to contextual changes. 

Finally, the ability to explore and leverage local and remote information alike to make 
decisions about workload orchestration creates concerns about the privacy and confidentiality 
of this information. On one hand, a free flow of information would greatly benefit the ability 
of the system to make fully informed and optimal decisions, while the risk of leakage of 
sensitive, or even private, information would suggest a more restrictive approach. Part of the 
activities of WP4 explores how to leverage and expand state-of-the-art for the utilisation of 
privacy-preserving techniques within the decision-making process, would it be at model 
training or inference stage. Note that this activity is complementary to the work performed 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 14 of 69 

 

within the boundaries of WP5, where the focus of the research activity is the overall system 
security and privacy. 

All these challenges are spawning from the interaction that WP4 is having with the other WPs, 
as illustrated in Figure 1. We want to remark how the requirements are primarily provided by 
use case providers, through the influence of WP7 to WP3 and WP2, which is then embraced 
in the activities of WP4 and WP5. 

 

 

Figure 1 Relationship between technical WPs 

In the remainder of this deliverable, we will present the preliminary results of the research 
activities conducted in WP4 to address the previously introduced research challenges.  

WP4 – Intent-based 
decentralised FLUIDOS 

continuum

WP3 – Modular and 
extensible FLUIDOS node

WP7 – Business use cases 
and market validation

WP5 – Seamless, zero-trust 
security and privacy

WP6 – Cost-effective and 
energy-aware infrastructure

WP2 – FLUIDOS reference 
architecture
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2 INTENT 

The most generic definition of intent is the intention, purpose, or determination to do 
something. Within the cloud continuum provided by FLUIDOS, we use the term intent in a 
quite generic way. As reported in D2.1, we define intent as a way for the users to assign 
constraints to each workload execution through a high-level language without the need to be 
aware of the underlying computing infrastructure. 

This definition, purposely vague, allows exploration of multiple approaches and techniques 
to both characterise and enforce user requests. Note that this generality of the definition 
requires some formal framework to allow users, and systems, to migrate between the possible 
semantic definitions and concrete serialisation. WP4 heavily collaborates with WP3 on this 
front, namely contributing and field testing the FLUIDOS ontology, which is presented in 
D3.1. 

In the remainder of this section, we provide an overview of state-of-the-art and best practices 
for allowing users to express implicit and explicit requirements to workload execution. 

2.1 MEDIUM-LEVEL SECURITY POLICY LANGUAGE 

The Medium-level Security Policy Language (MSPL) [72] is a policy language originally defined 
to abstract the configuration languages with a vendor and control- independent format, which 
is organised by capabilities (e.g., a firewall from a particular vendor may implement packet 
filtering functionality in its capability set, while another vendor may implement also a deep 
packet inspection capability in his/her firewall). Unfortunately, defining this abstraction is not 
trivial because each security control has a specific syntax. Therefore, the mapping can be 
unmanageable in a generic syntax and MSPL is organised by security capabilities. A Capability 
is a basic feature offered by a security control (e.g., filtering, anti-spam, data protection, 
parental control). Therefore, MSPL is organised by a general model that defines the high-level 
concepts (policies, rules, conditions, actions, etc.) and a set of sub-models to capture the 
semantics specific concepts as attributes, condition types, methods, and more. 

MSPL has been designed to satisfy the following requirements: 

• Abstraction: the language must contain abstract security-related configurations, 
independent from a given vendor or product specific representation and storage. The 
reason for this requirement is that configuration semantics are independent from the 
actual representation. In fact, the same configuration settings can be represented and 
enforced in different security controls. 
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• Diversity: it must support the description of configurations for a variety of security 
functions (confidentiality, filtering, etc.). The configuration meta-model must 
furthermore support the configuration of such security capabilities, which follow 
different policies and concepts (e.g., communication protection, parental control), and 
are applied to different types of security controls. 

• Flexibility and extensibility: it must be flexible and extensible enough to support the 
introduction of new security controls. 

• Continuity: it must ensure the continuity of the policy chain, starting from HSPL down 
to the security control settings. This is useful for tracking which policy is enforced and 
which user is associated with it. 

The MSPL language has been then extended [73] to further augment the expressivity of the 
language to additional domains, including the ability to characterise infrastructural and 
security requirements in IoT solutions. 

Furthermore, in [74] MSPL has been extended, and leveraged, to allow reasoning on top of 
infrastructure and security requirements. This capability is being further expanded within 
FLUIDOS to support requirements beyond security. Thus, allowing the language, and 
associated solvers, to reason upon workload related user intents. Note that in this context, 
intents are required to be specified within the MSPL language. Examples of intent definition 
in MSPL are presented in Section 3.2.1. 

Figure 2 depicts the relationships between the various projects and associated standards 
leveraged by FLUIDOS through MSPL. 

 

 

Figure 2 Relationship between FLUIDOS MSPL and prior work. 

2.2 INTEL INTENT POLICY LANGUAGE 
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An alternative approach taken by players like Intel [6], is to expand Kubernetes itself with 
Custom Resources (CRs) to allow the user to express intents in a declarative fashion. A user 
expresses their intents in form of objectives (e.g., as required latency, throughput, or reliability 
targets) and the orchestration stack itself determines what resources in the infrastructure are 
required to fulfil the objectives. This approach allows users to define an intent as a set of 
objectives related to a target Deployment, as shown in Figure 3. 

 

Figure 3 An example of intent manifest according to Intel's definition. 

This relies on the ability to expand the supported objectives through external actuators for 
each supported objective. 

2.3 TOPOLOGY AND ORCHESTRATION 
SPECIFICATION FOR CLOUD APPLICATIONS 

The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) [62] is 
the de-facto modelling and representation paradigm for specifying Infrastructure as Code 
(IaC). TOSCA allows for the expression of topologies of cloud-based applications, their 
components, and relationships, through node and relationship templates. These templates 
represent respectively the resources or components to be used in the deployment and the 
dependencies between the nodes [63]. TOSCA is an open standard designed to be cloud 
platform agnostic, unlike similar orchestration standards such as AWS CloudFormation or 
OpenStack Heat, which are tailored to their specific platforms. TOSCA-compliant 
orchestrators such as xOpera [64] allow for cloud application deployment to arbitrary IaaS. In 
[65], Tamburri et al. elaborate on the possibility of intent modelling using TOSCA templates, 
and [66] describes a proof-of-concept Intent-based TOSCA Cloud Management Platform that 
transforms high level intents, written in a natural-like language, into TOSCA YAML IaC 
definition files. For a simple example, Figure 4 shows the definition of a single server with 
both host and OS characteristics defined according to the TOSCA Simple YAML schema. 
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Figure 4 A simple "Hello World" for TOSCA. 

2.4 NETWORK INTENT LANGUAGES 

Similarly to TOSCA, a set of languages have been proposed to describe high level 
requirements for network infrastructure. From both the structural and performance point of 
view. This way, high-level network intents can be “translated” into low-level network 
configurations that can be pushed to configure network devices. Intent Description 
Languages (IDLs) such as the Network Intent LanguagE (NILE) [67], [68] have been introduced 
to help represent network requirements and constraints. In [67], the "Lumi" chatbot uses NILE 
as an abstraction layer between the natural language description of the network intent 
provided by the end user and the final Merlin [69] network configuration language. 
Additionally, [70] converts multiple network intents described using NILE into a P4 
configuration file. Natural Language Processing (NLP) techniques are used in [67] and [71] to 
perform entity extraction, selection, and labelling, in conjunction with user feedback to 
correctly perform the translation of the intent into the intermediary representation. 
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3 FLUIDOS NODE META-ORCHESTRATOR 

This section provides an overview of the n scheduling, and meta-orchestration by the 
consortium members. It's important to note that this summary does not cover all ongoing or 
pending work at the time of this deliverable's preparation. Further details and developments 
will be included in the next report, Deliverable D4.2, and in regular periodic updates. 

3.1 ALGORITHMS FOR ORCHESTRATION IN CLOUD 
TO EDGE CONTINUUM 

This section describes the orchestration and scheduling algorithms proposed as part of the 
activities of WP4.  

We focus on the details of each methodology, beginning with methods that are driving the 
orchestration according to specific purposes, namely an economical driven approach 
presented in Section 3.1.1, and another aiming at optimising network performance 
characteristics, namely latency, as presented in Section 3.1.2. 

After that we focus on two main approaches for meta-orchestration. The first one relies on 
policy-driven meta orchestration, presented in Section 3.1.3, which allows users to specify 
higher level requirements for their application. On the other hand, Section 3.1.4 gives some 
insights on an AI-driven approach to meta-orchestration, where implicit and explicit 
requirements are used to identify optimal deployment characteristics.  

3.1.1 Cost-based orchestration 

To promote the vision of a fully decentralised virtual computing ecosystem, the FLUIDOS 
architecture enables a peer-to-peer sharing of resources between the different actors involved 
in computing environment creation. In practice, this is achieved by a dynamic peering 
protocol which oversees identifying the available peers and of negotiating the resources (e.g., 
CPU, RAM, Disk Memory) to deploy applications. The effect of this sharing strategy makes it 
possible for every service provider to access a pool of external resources when deploying 
their applications in addition to the ones already owned. 

On the one hand, from a service provider perspective, the temporary acquisition of such 
resources (in other words, computational resources leased by other providers) can greatly 
increase the service quality performance. For example, it improves the application elasticity 
to absorb workload spikes during a heavy-loaded service requests scenario and enhances the 
cluster fault tolerance by distributing/replicating the microservices across different 
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geographical regions. On the other hand, the leasing of resources from multiple infrastructure 
owners increases the economic expenditures sustained by each provider to run the related 
services which may severely hinder the advantages of the peering process. 

Following this observation, the design of cost-aware orchestration algorithms covers an 
important role to mitigate the deployment costs by limiting the external resource 
consumption of the various applications. Although the cost minimization problem has been 
investigated on traditional cloud computing scenarios, which are essentially composed of 
physically co-located computing nodes, the FLUIDOS scenario entails additional challenges 
which require novel orchestration solutions. Unlike Li, Q. et al. in [14] and Samanta, A. et al. 
[15], who assume applications deployments on a restricted region, FLUIDOS nodes rely on 
computational resources that are geographically dispersed on a wide area, hence 
microservice-based applications might be split and executed at the edge or in the cloud, 
depending on their use case. 

Moreover, existing works on resource allocation problems for the deployment of applications, 
such as Pallewatta, S. et al. [16] and Aryal, R.G.et al. [17], do not jointly consider their 
placement and communication requirements. Therefore, they are only partially effective in 
the FLUIDOS scenario, where the distributed application deployment imposes a fine-grained 
set of spatial constraints which in turn translates into latency and bandwidth requirements that 
various microservices need to satisfy to ensure the targeted quality of service. For example, 
some microservices in charge of the processing of real-time data must be at the edge for real-
time applications. In contrast, batch workloads might require large volumes of computational 
resources only available on cloud nodes. 

These heterogeneous deployment scenarios that, on one hand, prioritize applications 
deployment on few nodes to reduce the need of external resources, while one the other hand, 
promote the disaggregation of microservices across multiple nodes to better fulfil the latency 
and bandwidth service requirements, push for the necessity of an orchestration scheme 
striking a balanced deployment solution between both strategies. In this context, we 
investigate a cost-aware orchestration which quantifies the minimum amount of rented 
external resources needed by a service provider to ensure that the requirements posed by a 
given set of applications with locality constraints are accommodated. 

3.1.1.1  System model 

We consider a geographically distributed computing environment that spans both cloud and 
edge infrastructures. The physical part of the infrastructure is split in D domains. We model 
the infrastructure topology as a weighted graph: 

𝐺! = (𝑉" , 𝐸") 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 21 of 69 

 

where 𝑉" is the set of nodes corresponding to the various domains which have associated a 
cost, reflecting the cost to deploy a microservice, 𝐸" is the set of edges representing the 
physical connection between domains, where 𝐸# represents the links originating from domains 
i, and are characterized by some latency and bandwidth capabilities. 

Each domain is owned by different service providers which rent/lend some resources from/to 
other providers through an automated brokerage system managing the whole 
acquisition/selling process to deploy their applications. 

From a service provider perspective, the external resources, which are the ones leased by 
other providers, are costly, compared to the internal resources, which are the ones originally 
owned, hence their usage should be minimized. We assume that the cost per unit of external 
resource is w=1, whereas is w=0 for internal resources. The service provider objective is to 
deploy A applications on its own domain. Each application is modelled as a directed graph: 

𝐺$ = (𝑉% , 𝐸%) 

where the set of vertices 𝑉% ,	 represents the microservices composing the application, whereas 
the set of edges 𝐸% ,	represents the communication flows between the various microservices. 

Depending on the application demands, in some cases it may not be able to meet the 
applications’ requirements based on its own infrastructure alone. This can be due to resource 
scarcity within the main domain or (e.g., not enough processing capacity is available to deploy 
all the applications) or because of locality constraints dictated by the distributed nature of the 
considered computing environment. Such constraints can be of two types: 

• Geographical: an application requires some storage or processing in a specific 
geographical location, e.g., for privacy reasons. This is typically related to the 
elaboration of data gathered by specific sensors. A customary example is video 
streaming capture and elaboration from robots working within a factory facility. 

• Functional: the main fog provider cannot secure a specific set of resources required 
by an application either because they are placed in a different domain or because the 
available resources are not sufficient for the application execution. For instance, an 
application may require a set of GPUs for fast processing, but the set of GPUs available 
to the main fog provider may satisfy such demand only partially. 

In this scenario, the goal is to allocate the needed federated fog resources while satisfying 
any application’s requirement and using self-owned resources as much as possible. 
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3.1.1.2  Cost-aware orchestrator 

We approach this problem by first formulating an optimization problem to compute the 
optimal application placement, then we approximate such a solution by designing a low-
complexity heuristic. 

Optimal solution 

The deployment of applications is defined as a map that associates applications’ 
microservices and their exchanged network traffic flows to the available fog resources. 
Formally the application deployment problem is formulated as an integer linear programming 
(ILP). In detail, we formalized the decision variables, objective function and the related 
problem constraint as follows: 

• Objective Function: this is the cost of deploying a microservice onto a physical node 
of the infrastructure. The cost of such deployment is assumed larger when it is 
performed onto a node owned by other service provider, because their resources 
need to be rented. We assume a linear cost model, where cost of the rented external 
resource is directly proportional to the amount of bought CPU, RAM, and disk 
memory. 

• Constraints: we define two sets of constraints. The first set takes care of the 
mathematical feasibility of the solution, meaning that we ensure that microservices are 
uniquely allocated on each node and that the output solution must be integer. 
Differently, the second set of constraints implements the deployment locality 
requirements by forcing a target subset of application microservices on specific 
domains to comply either to geographical or functional constraints previously defined. 
In addition, we ensure that communication flow between microservices also satisfies 
the required bandwidth and latency requirements and that these can be supported by 
the physical links connecting different domains of the infrastructure. 

The proposed problem formulation can be essentially considered as a problem instance of 
computing the optimal topological mapping between virtual resources and physical resources 
represented as a graph. This representation corresponds to the well-known virtual embedding 
(VNE) problem, which is known NP-hard. For this reason, we also propose a heuristic algorithm 
to overcome the computation complexity of the optimal solution and make the proposed 
approach scalable for a larger number of nodes and applications. 

Heuristic solution 

The general idea adopted by most of the state-of-the-art heuristic solutions (e.g., [76]) is 
based on a Depth-First-Search (DFS) exploration of the search space for applications 
deployment. However, in our scenario, this may lead to situations where the resources of a 
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domain are saturated preventing the deployment of additional microservice whose locality 
constraints reside on that region. To overcome this limitation, we propose an alternative 
solution that is specifically tailored to the requirements of our problem, where locality 
constraints play a fundamental role, which is based instead on a Breadth-First Search (BFS) 
method. In particular, the key idea of the proposed scheme is the prioritization of the 
constraints during the partitioning phase to ensure that they are satisfied if there are enough 
resources left on the target domains. The algorithm consists of three main steps: 

• Sorting of the batch of applications: all the applications are sorted based on their total 
bandwidth consumption. 

• Partitioning of each application graph: following the application order defined in 
previous step, each application is partitioned based on the locality constraints defined 
on each microservice. This step defines the domain-based sorting of applications. 

• Virtual node and link mapping: by iterating over all the applications in a breadth-first 
manner, this step explores all of them jointly and level by level. At each iteration, each 
microservices’ subsets (as specified by the domain-based sorting ) is mapped to a 
domain, where those ones with the lowest deployment cost are prioritized and, at the 
same time, the least-congested links (in terms of bandwidth) are used. 

The total computational complexity of such algorithm is polynomial in the input size, which 
drastically reduces the execution time required to compute each applications deployment 
compared to the optimal solution. 

3.1.1.3  Performance evaluation 

Simulation setup 

We assessed the results of the OPTimal and the heuristic solution, referred respectively as 
OPT and BFS, throughout simulations. We compared their performance against two state-of-
the-art schemes leveraging a DFS approach named as:  

• DFS_SoA_NoCost: this scheme does not consider the deployment cost optimisation; 
hence, its objective is just the maximisation of the number of deployed applications 
while trying to accommodate as many locality constraints as possible. 

• DFS_SoA_Cost: this scheme minimises the deployment cost while completely ignoring 
locality constraints.  

For all considered schemes, we analysed the cost performance, which essentially corresponds 
to the number of external and internal resources required to run the applications, and the 
feasibility performance which quantifies whether the computed deployment for each 
application batch can fulfil the services requirements. For each experiment we generated a 
batch of applications whose requirements in terms of CPU (measured in terms of Million 
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Instructions Per Second, MIPS), storage, memory and throughput are uniform independent 
random variables with distribution values for each microservice as reported in Table 1. Unless 
stated differently, we assume that each batch is deployed on 3 different domains. Each data 
point in the reported graphs is the obtained average value over 30 randomised instances, 
where the network infrastructure does not change while the batch of applications and host 
distribution are randomly generated as described above. All the points are reported with their 
corresponding 95% confidence interval. 

Number of 
domains D 

Mean value Range 

CPU  1250 MIPS [500,2000] MIPS 

Memory 1.2 GB [0.5, 2] GB 

Storage 3.5 GB [1, 8] GB 

Throughput 3 Mbps [1, 5] Mbps 

Delay 262.5 ms [25, 500] ms 

Table 1 Applications’ microservices requirements. 

Cost and feasibility results  

In Figure 5a, we can notice that OPT, BFS and DFS_SoA_NoCost have high feasibility. 
Specifically, the OPT and BFS strategies have a feasibility of 100%, meaning that they can 
deploy the complete batch of applications in all the 30 randomised instances (note that 
feasibility refers to the percentage of instances that are feasible). Additionally, looking at the 
deployment cost, which is computed as the sum of the costs associated to the used external 
resources, in Figure 5b we can see that BFS offers a solution very close to the optimal one 
(OPT). 
 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 25 of 69 

 

 
Figure 5 Feasibility-optimality trade-off. a) Feasibility percentage; b) Total deployment cost 

for each application. 

DFS_SoA_NoCost, on the other hand, leads to a high deployment cost even though it has a 
good feasibility percentage. Conversely, in DFS_SoA_Cost the feasibility percentage is low 
as well as the deployment cost. This behaviour is reasonable given the greedy nature of the 
DFS approach. Indeed, if we include a cost optimization in such an approach, the algorithm 
prioritises all the regions with the lowest cost (that is, the regions in the main domain) for the 
deployment of all the applications’ microservices. In this manner, resources with lower cost 
are quickly saturated precluding the possibility to satisfy the locality constraints for the 
applications that have not been deployed yet. 
On the other side, if we do not consider cost optimisation, all the regions are treated in the 
same way, increasing the chance of having a feasible solution while increasing the deployment 
cost too. From this perspective, the BFS approach is beneficial since it does not evaluate the 
deployment of each application at the time, but it considers the deployment of a part of every 
application at each iteration. Thanks to this property, this method leads to a high feasibility 
percentage, since it helps guarantee locality constraints, and to a strong reduction of the 
deployment cost. 
 

 

Figure 6 Realistic case with increasing number of domains. a) Feasibility percentage; b) 
Average deployment cost for each application. 
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In Figure 6 we report the feasibility and the cost performance as the number of domains 
increases. Note that we omit the optimal solution due to the high computational time required 
to solve the optimisation problem. BFS achieves 100% of feasibility for all the sizes of the 
physical networks and presents the lowest deployment cost as the number of regions 
increases. Even when more resources are available with a higher number of regions, 
DFS_SoA_Cost has a low percentage of feasibility, thus highlighting the need to perform a 
breadth-first search in the state space for the deployment of applications presenting these 
locality constraints. 
 
Scalability results 

We analyse the scalability performance of the various schemes by measuring the execution 
time required to complete the deployment solution. Results are presented in Table 2 and 
Table 3. We remark that the values of OPT refer to executions that are stopped after 5 minutes 
if the solver has not completed the computation in that time range. To provide a 
comprehensive analysis, we assess the results by varying the number of deployed applications 
and then by varying the number of domains (in the latter case, we average the execution time 
performance across all deployed application batches). In general, the higher scalability of all 
heuristic approaches is apparent compared to OPT. Note that DFS_SoA_Cost has lower 
execution time than the other approaches because its execution is generally stopped earlier, 
i.e., when the algorithm cannot deploy one of the applications and the deployment is 
considered infeasible. Conversely, thanks to its polynomial time complexity, the proposed 
BFS scheme achieves comparable time performance while always ensuring the 100% 
feasibility of each application batch regardless of the number of available domains. 
Furthermore, the modest increase of the computational complexity makes it still suited for 
practical real-world scenarios. 
 

Number of  
apps 

OPT BFS DFS 
(SoA_NoCost) 

DFS 
(SoA_Cost) 

10 3.58 0.03 0.02 0.02 

20 40.30 0.07 0.07 0.03 

30 79.10 0.13 0.12 0.04 

Table 2 Execution time (sec) with increasing number of applications to deploy. 

Number of domains  BFS DFS 
(SoA_NoCost) 

DFS 
(SoA_Cost) 
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3 0.14 0.09 0.09 

10 0.22 0.10 0.10 

20 0.50 0.31 0.33 

Table 3 Execution time (sec) with increasing number of domains. 

3.1.2 Latency-aware orchestration 

With the growing significance of edge and fog computing paradigms in tackling concerns 
related to geographic proximity, minimised latency, and heightened privacy as highlighted in 
previous research [28][29], these approaches are progressively extending their scope to 
include smaller data centres located at the network's periphery. This expansion capitalises on 
shared foundational components to enhance service adaptability and creates a seamless 
transition from the edge to the cloud [30], particularly with the rising prominence of multi-
regional cloud resources. 

Many orchestrators have been developed in recent years, to optimise computational 
resources like CPU and Memory [31]. Nevertheless, the uniqueness of the edge-cloud 
continuum poses several challenges to traditional orchestrators. A critical observation is the 
absence of innate capabilities to dynamically adapt to variations in network metrics and the 
absence of real-time metrics in decisions. In addition, within the edge-cloud continuum, 
scheduling decisions can have a significant impact on the performance achieved by 
applications managed via Kubernetes. 

Recent solutions such as [32][33] introduce custom Kubernetes plugin for network-aware pod 
placement strategies for telemetry aware schedulers, or in [34] pods are offloaded in a three-
tier network, blending cloud and edge computing to minimise the latency. 

In contrast, we design a multi-cluster scheduler that goes beyond meeting user-specified 
intentions and places a strong emphasis on addressing user-perceived latency, but also makes 
optimal use of the cloud-edge continuum. 

Our approach attempts to dynamically (de)allocate pods based on real-time latency 
measurements to satisfy users’ needs. Our custom Kubernetes scheduler considers a variety 
of distributed peering clusters and arranges pods within the nearest node to minimise the 
latency perceived by users. The system is structured as a closed loop, constantly monitoring 
latency to adapt scheduling decisions and cater to user mobility requirements. We 
implemented our solution in an actual cluster system hosted at POLITO. We conducted a 
comparative analysis with the default Kubernetes Scheduler to showcase its efficiency in 
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latency reduction. Furthermore, we assessed its intent-based functionalities and examined 
their influence on system performance and convergence time. 

3.1.2.1 Latency-aware scheduler 

The scheduling process provides a structure for assigning pods to computing nodes. Usually, 
it follows a request-driven methodology where it begins by filtering out nodes with 
inadequate resources and subsequently assigns the pod to one of the remaining nodes with 
sufficient capacity. This positions the scheduler as a crucial component responsible for 
resource management and determining workload adaptations. Moreover, it assumes a pivotal 
role in facilitating the execution of latency-sensitive microservices operating in the cloud-edge 
continuum. 

For latency-driven operations, we utilise two custom services: the Latency Meter and a 
specialised Latency Aware Scheduler. The Latency Meter is installed on every worker node 
as a sentinel container within each pod replica. It serves as a proxy, intercepting each user 
request to gauge and record real-time network latency between users and nodes. When a 
request is received, it calculates the latency by comparing server and client timestamps and 
then stores this information in volatile memory for fast read-write access. The custom Latency 
Aware Scheduler can periodically retrieve these measurements. 

This component integrates into the Kubernetes control plane, replacing the default scheduler 
and leveraging latency metrics for dynamic, informed pod scheduling. This custom scheduler 
comprises three key components: 

• Scheduler: this component operates similarly to the default Kubernetes scheduler, but 
it incorporates a priority mechanism. The goal of this mechanism is to evenly distribute 
pods across all nodes, ensuring a diverse range of latency measurements. 

• Descheduler: the descheduler periodically communicates with the Latency Meter to 
update the LatencyMeasurements (LM) data structure. Based on these measurements, 
it determines whether a pod should be reallocated and, if so, triggers the 
descheduling process. This dynamic interaction between the Descheduler and 
Scheduler determines which pod should be descheduled.  

• Latency Measurmentes (LM): This component stores latency measurements within an 
in-memory data structure. Although a persistent storage option could have been 
utilised, using volatile memory allows for quick data access. 

When a user request is received, an exploration phase begins to collect measurements. 
Initially, no measurements are available, so pods are scheduled randomly. If the current 
configuration violates the latency constraints, the Descheduler acts by deallocating the 
affected pods. These pods are then reallocated to nodes that have not been explored 
previously to collect new latency measurements. A steady state is reached when the latency 
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constraints are met. However, it's important to note that perceived latency can fluctuate due 
to dynamic network conditions or user mobility. Consequently, the entire process operates 
within a control loop that continuously monitors latency levels, leading to adaptive updates 
in scheduling decisions as necessary. 

Our solution makes scheduling determinations in accordance with user-defined latency 
requirements, expressed as intent. Users can specify whether they have hard, soft, or no 
constraints through a YAML file that outlines the configuration of the Kubernetes cluster 
deployment. More precisely, within the YAML file, users can designate up to two values in the 
annotation: hard_constraint and soft_constraint. As we assume that latency variation within a 
cluster is minimal, the solution initially focuses on latency-aware choices to identify a suitable 
cluster. Subsequently, it employs load-balancing decisions to select the node. 

When a hard constraint is set, it means that a stringent latency threshold must be strictly 
adhered to. In this scenario, if the exploration phase records measurements that surpass this 
stringent threshold, the Descheduler promptly releases the pertinent pods and requests their 
reassignment until the user-defined constraint is met. In this context, the system prioritises a 
swift and efficient mechanism over frequent pod migrations. The primary objective is to fulfil 
the specified latency constraint, representing a trade-off between minimising latency and 
ensuring operational stability. If the constraint cannot be met, the scheduler will opt for the 
cluster with the lowest latency and notify the user accordingly. 

In the absence of a defined constraint, our scheduler aims to minimise user-perceived latency. 
To achieve this, it must gather measurements from all available clusters. Consequently, its 
core strategy is to distribute pod replicas across a range of nodes, while the Descheduler 
constantly monitors latency. Once the Descheduler accumulates measurements from all the 
application pod replicas, a loop mechanism initiates. This process involves removing pods 
from the cluster with the worst latency, effectively triggering the allocation of new pods on 
nodes that have not been explored yet. Fresh measurements are then collected, and the 
cluster with the highest latency is once again identified. After this series of local optimization 
steps, which can lead to suboptimal solutions, once enough measurements are gathered, the 
entire dataset is utilised to schedule pods on the clusters with the lowest global latency. 

When a soft constraint is defined, the emphasis is on prioritising Soft Valid clusters, i.e., 
clusters whose latency stands between the hard and soft acceptable. Specifically, if we denote 
N_soft as the number of Soft Valid clusters currently hosting pods and N_hard as the number 
of Hard Valid clusters, i.e., satisfying the hard constraint, the Soft Condition is triggered when 
the following condition is met: N_soft + N_hard > N_tot/ 2, where N_tot represents the total 
number of clusters.  

The Soft Condition mechanism is then activated, leading to the process of descheduling from 
Hard Valid clusters in favour of Soft Valid ones with the goal of further reducing latency. 
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However, because this involves a greater number of measurements and reallocations and 
gives priority to Soft clusters over the others, meeting the soft constraint is achieved at the 
expense of load balancing and the time required for convergence. 

Each time a new pod must be scheduled within a specific cluster, our scheduler employs a 
load-balancing strategy. To achieve an even distribution of pods across a range of nodes, a 
priority list is generated. A node's priority is determined by the number of pod replicas from 
the same application it accommodates: nodes with fewer pods are given higher priority. If 
multiple nodes have the same priority, the one with less resource usage, such as CPU and 
RAM, is selected. In the event of a tie, the choice is made randomly. 

 

3.1.2.2  Performance Evaluation 

To test this solution, we create 9 Kubernetes-driven clusters, where each worker node (2 per 
cluster) runs Ubuntu 20.04.6 LTS with 2 GB RAM, 2 CORE CPU and 20 GB disk, containerd2 
is the default container-runtime, and the Container Network Interface (CNI) is Flannel. The 
network interconnection among clusters is set up with Liqo3 using the out-of-band peering, 
which includes initial authentication and communication with remote Kubernetes API servers, 
to flow independently of the VPN tunnel established between clusters. We then use the tc 
command to establish the latency range for each cluster. It's important to emphasise that 
there is an inherent baseline latency within the clusters, which we empirically determined to 
fall within the range of 15 to 25 milliseconds. 

We have devised three distinct scenarios to investigate both the success rate and latency 
distribution in diverse network conditions: 

• Scenario 1 enforces stringent latency constraints, which pose a significant challenge 
for many clusters to meet. This scenario serves as an example of a high-demand, 
low-tolerance application setup.  

• Scenario 2, on the other hand, relaxes the latency limits and comprises clusters with 
low latency, reflecting a more accommodating network environment.  

• Scenario 3 is characterised by clusters with higher latency but still within acceptable 
latency bounds.  

 

2 https://containerd.io/ 

3 https://liqo.io/ 
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This diversity in scenarios *reached by varying the latency via tc) allows us to assess the 
capability of schedulers in deploying pods in the most suitable clusters.  

To gather latency data, we configure the latency meter to collect values every 5 seconds, and 
the descheduler operates every 30 seconds. This configuration aims to prevent frequent 
migrations and ensures a reliable evolution of latencies. In each scenario, we conducted 100 
tests and reported the average values. 

3.1.2.3 Convergence and Accuracy of the Solution 

In this series of experiments, we conduct a comparative analysis between the Default 
Kubernetes Scheduler and three variants of our proposed solution:  

• Hard-compliant, where our latency-aware scheduler focuses solely on meeting the 
hard constraint.  

• Soft-compliant, where the scheduler also tries to fulfil the soft constraint.  
• Min-Lat, where the scheduler prioritises selecting the node that minimises user 

latency. 
These variants are tested in all three scenarios to verify our solution’s ability to satisfy latency 
requirements. Therefore, we begin by evaluating the schedulers' ability to meet the 
required latency. Figure 7 depicts the distribution of latency values (as a box plot) and the 
success rate for soft constraints (depicted as a blue curve) for all the tested schedulers 
across multiple scenarios. It becomes evident that the Default Scheduler demonstrates 
subpar performance in various scenarios, with an average latency of 70.52 ms, which is the 
highest among all the schedulers. Furthermore, the latency varies significantly among runs 
due to the latency-agnostic nature of pod scheduling by the Default Scheduler.  
 

 

Figure 7 Latency (box plot) and success rate (blue curve) for all testing scenarios. 

When evaluating the success rate, the Default Scheduler consistently achieves only around 
50%, indicating that it essentially performs at the level of a random decision when placing a 
pod in a valid cluster. In contrast, Hard-compliant shows a substantial reduction in latency 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 32 of 69 

 

compared to the Default Scheduler in all scenarios, with a success rate of 76.5%. However, it 
doesn't reach 100% success because it prioritises "hard" constraints over "soft" ones. Both 
Soft-compliant and Min-Lat consistently maintain very low latency, typically below 22 ms, with 
Min-Lat slightly outperforming Soft-compliant in most scenarios. Both solutions achieve an 
impressive 100% success rate, demonstrating their high reliability in ensuring task execution. 
Notably, Min-Lat may require a longer convergence time, and the cumulative distribution 
function (CDF) of convergence time for our schedulers is shown in Figure 8. 

We compare against a similar latency-aware scheduler, namely [77] referred to as Latency-
Aware Kubernetes (LAK) in the following. 

Comparatively, Hard-compliant consistently records the quickest convergence times, 
showcasing its rapid adaptability to system fluctuations. Soft-compliant takes longer to adapt 
but is still considerably faster than Min-Lat, which often exhibits prolonged convergence 
times, exceeding 241 seconds. In summary, the Default Scheduler lacks latency correction 
and places pods in clusters without any consideration of latency, resulting in random 
selections. On the other hand, the scheduler of our solution offers clear advantages.  

LAK, instead, by not considering the union of clusters but treating them individually, takes 
much longer to find suitable nodes to host the applications in all three scenarios. 

Hard-compliant strikes a balance between speed and performance, making it suitable for 
dynamic environments. In contrast, Soft-compliant and Min-Lat are optimised for high-
performance solutions. Therefore, the choice of scheduler can be made based on specific 
requirements, whether it's adaptability or swift action. 

 

Figure 8 CDF of converge time for the three scenarios and comparison with alternative 
Latency-Aware Schedulers (LAK). 

3.1.3 Policy-based Meta-orchestration 
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Distributed computing is transforming the way services are provided, especially when 
solutions focus on collaboration and aggregation of resources provided by different entities 
or organizations. As a result, challenges arise such as heterogeneity of infrastructures and 
technologies, which has a direct impact on the management of these infrastructures [75]. To 
try to manage a distributed infrastructure when dealing with service deployment requests, we 
cannot only rely on an allocation/orchestration algorithm, this is where meta-orchestration 
arises, with the objective of choosing the best algorithm given the current situation of such a 

dynamic infrastructure as distributed environments and the policy received, once the 
orchestration/allocation algorithm is chosen, it will be in charge of solving the allocation 
placement problems which are those that once solved, it knows where the service is going to 
be deployed. 

Figure 9 Meta-Orchestration Process 
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The orchestrator is the brain of the architecture and in general will provide us with three 
fundamental answers: what, where and how. These answers are broken down along various 
stages of the orchestration process. The "what" refers to what will be deployed, the "where" 
means where it will be deployed and the "how" encompasses the strategy and methodology 
by which the service will be deployed. This aspect involves critical decisions, such as the 
efficient allocation of resources, network configuration, capacity management, etc. As we 
move through the various stages of orchestration, the orchestrator becomes the master 
architect, comprehensively coordinating the "what", "where" and "how" to achieve a smooth 
and efficient implementation of the required services. The meta-orchestrator's decision to 
determine which algorithm to choose is currently governed by the algorithm that offers the 
fastest decision time based on the number of nodes available in the infrastructure and the 
number of constraints that have been requested in the policy (both soft and hard). As shown 
in the Figure 9, there are four allocation algorithms, which have been designed following a 
common structure to provide a modular and adaptable approach which gives an essential 
flexibility for the incorporation of new algorithms and the continuous improvement of the 
system performance.  

The allocation process developed in scope of FLUIDOS has as goal provide what software is 
going to be deployed and where. For this purpose, as shown in Figure 10,it is divided into 
two phases: 

In the first phase the software to be deployed is selected so the orchestrator provides a set 
of candidate software depending on capacities that come extracted from the policy which has 
been translated and the orchestrator has inferred. For example, a policy that asks to deploy 

Figure 10 Allocation Process 
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a HTTP Server, the orchestrator knows that this capability belongs to Apache and Nginx 
software, so it proposes them. The algorithm, depending on the constraints, will select the 
software with the lowest computational cost for the enabler/node, so it considers software 
characteristics such as CPU, RAM, DISK consumption, time it takes to deploy, etc. Based on 
weights that can be dynamically assigned to these variables and the constraints determine 
the software to be chosen. 

The last phase determines the node to be chosen by selecting from a set of candidate nodes. 
As in the first phase, these nodes are chosen based on their capabilities (for example, nodes 
with specific capabilities such as TEE, honeypots). In this phase, the selection of 
nodes/enablers aims to minimise the computational impact on the nodes, considering factors 
such as CPU, RAM, disk, and latency. Dynamic weights are applied to these factors to 
determine their importance. In addition, if constraints require it, values such as hops, service 
distance, bandwidth and location awareness can be considered. The latter implies that if the 
data does not have to pass through a particular location, e.g. France, the algorithm will 
exclude those nodes where the data would pass through France. For example, the policy 
could have a constraint of the type "the HTTP server has to be deployed in France with a 
latency of less than 30 ms", so the algorithm will try to select the most suitable node. Once 
the allocation algorithm is finished, it returns the software and the node to be deployed and 
passes it to the orchestrator to continue with the orchestration process and as the brain of the 
architecture it oversees executing and storing a new enabler in the system, continuing with 
the example, the new enabler would be the HTTP Server. 

It is crucial to note that the work of the orchestrator goes beyond the simple deployment of 
services. The deployment of a service represents only one phase of the orchestration process, 
specifically called the allocation process. Orchestration encompasses a wider range of 
functions, some of which include translating policies into a format understandable to the 
system, checking for possible conflicts or dependencies in input policies and reactively 
resolving such problems, storing information regarding deployments, and invoking the 
various fluid components for monitoring, resource acquisition, etc. For example, consider the 
scenario in which two services are to be deployed, and one of them depends on the other. In 
this situation, the orchestrator would generate events to effectively address and resolve these 
problems. Similarly, if a resource shortfall is detected, the orchestrator would take on the task 
of contacting the relevant components responsible for resource acquisition, all for the 
purpose of deploying the service. Therefore, the orchestrator will provide FLUIDOS with the 
versatility to deal optimally and successfully with service deployments, service management 
and as management infrastructure. 

3.1.4 Model based meta-orchestration 

The orchestration task which is to determine the most optimal node (or FLUIDOS node) for a 
given deployment (set of constraints) which can be formulated as a bin backing problem 
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(objects of different volumes must be packed into a finite number of bins or containers each 
of fixed given capacity in a way that minimises the number of bins used) is a NP-hard problem. 
As it was mentioned, mathematical modelling techniques attempt to solve the orchestration 
problem by means of ILP and then use standard techniques to find optimal solution for the 
problem However, due to their high computational cost, ILP formulations can only be used 
for small size problems. Moreover, there is no polynomial complexity algorithm to find optimal 
placement for large size problems. Therefore, most of the reported techniques are applying 
some heuristics to find approximate solutions to the problem. 

 

3.1.4.1 Background 

The implementation of the orchestration engine as a set of constraints (rules) is presented, for 
instance, in [1] by Santos, J. et al. A network-aware framework for a K8s platform named Diktyo 
is developed to determine the placement of dependent microservices in long-running 
applications focused on reducing the application’s end-to-end latency and guaranteeing 
bandwidth reservations. Guim, F. et al. in [2] present a solution for intelligent dynamic 
resources configuration on edge computing platforms hosting multi-tenant services while 
guaranteeing the Service Level Objectives (SLOs) for each service and helping green 
communication goals. The Multi-service Task Computing Offload Algorithm (MTCOA) is 
proposed in [3] by Song, S. et al. The algorithm is designed to solve the NP-hard Mobile Edge 
Computing (MEC) problem by minimising an objective function on the offloading cost of 
multi-service tasks to obtain the optimal unloading plan of the edge and remote cloud system. 

At the same time, recent solutions expand the orchestration domain to a distributed setting. 
One of approaches which proposes an orchestration platform for multi-cluster applications on 
multiple geo-distributed Kubernetes clusters, mck8s, is presented in [4]. The platform, 
developed by Tamiru, M.A. et al. offers controllers that automatically place, scale, and burst 
multi-cluster applications across multiple geo-distributed K8s clusters. In the work [5] 
Gabriele, C. et al. present a DRAGON, the Distributed Resource Assignment and 
Orchestration algorithm that seeks optimal partitioning of shared resources between different 
applications running over a common edge infrastructure. 

One of the key inputs for the orchestrator is a list of necessary resources which impacts a final 
deployment decision. In [6] Intel introduces Intent-Driven Orchestration, which allows to use 
intent instead of declaring a set of resources: a user expresses their intents in form of 
objectives (e.g., as required latency, throughput, or reliability targets) and the orchestration 
stack itself determines what resources in the infrastructure are required to fulfil the objectives. 
Following the similar path, Morichetta, A. et al. in [7] develop a methodology for deploying 
an intent-based system for the computing continuum and implement an architectural 
framework leveraging the serverless paradigm. The framework focuses on defining and 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 37 of 69 

 

implementing the main components for translating the management requirements into 
actions executed by serverless functions inspired by a three-layer model. 

Wu, C. et al. in [8] propose an Intent-driven DaaS Management (IDM) framework to 
autonomously determine the cloud-resource-amount configurations for a given DaaS QoE 
(Desktop as a Service Quality of Experience) requirement. Metsch, Thijs et al. in [9] propose 
an intent-driven orchestration method to enable service owners to express the desired target 
key performance indicator (KPI) objectives for their service components instead of 
declaratively defining the required state and resources. 

Nowadays Machine Learning methods are widely applied in various areas, including container 
orchestration. A comprehensive literature review of existing machine learning-based 
approaches was conducted by Zhong, Z. et al. in [10]. According to authors, ML-based models 
could produce more accurate orchestration decisions with shorter computation delays, under 
complex and dynamic cloud environments consisting of highly heterogeneous and 
geographically distributed computation resources, compared with traditional heuristic 
methods. For example, in [11] Han, Y. et al. introduce KaiS, a learning-based scheduling 
framework for K8s-oriented edge-cloud systems to improve a long-term throughput rate of 
request processing. KaiS adopts a two-time-scale scheduling mechanism to balance request 
dispatch and service orchestration. 

In [12] Lou, J. et al. explore Reinforcement Learning models being applied to task scheduling 
domain. The proposed approach jointly considers assignment and migration for mixed 
duration tasks and devises a novel energy-efficient task scheduling algorithm that outperforms 
the existing baselines in terms of energy consumption while keeping the same level of QoS. 
Iftikhar, S. et al. in [13] propose an approach called HunterPlus which examines the effect of 
extending the Gated Graph Convolutional Network’s GRU (Gated Recurrent Unit) to a BGRU 
(Bidirectional Gated Recurrent Unit). Authors also study the utilisation of Convolutional Neural 
Networks (CNNs) in optimizing cloud-fog task scheduling. Experimental results show that the 
CNN scheduler outperforms the GGCN-based models in both energy consumption per task 
and job completion rate metrics. 

 

3.1.4.2  Proposed approach 

The intent can be explicit and implicit. Explicit intents are the actual requirements from the 
user/client which need to be satisfied for successful performance of the deployment. 

The key component of any intent (represented by the pod manifest) is an image/list of images 
intended to deploy. To estimate the optimal placement for the image(s) the orchestrator 
needs to have an ability to evaluate the image in advance to deployment. A direct solution is 
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to benchmark the input image as it appeared to the orchestrator to evaluate desired statistics 
which can influence requested intents. Despite the potential benefits (such as guaranteed 
realistic characteristics) this solution lacks generalization as not all types of the images can be 
benchmarked this way. Service applications such as “nginx” can demonstrate low resource 
demand on the benchmark but perform different depending on the actual use case. Also, 
such metrics as latency or throughput are highly varying through time which makes only 
benchmarking insufficient measure. Hence, a more advanced approach is needed. The 
model-based orchestrator trained on large datasets which contain history of deployments for 
the given intent (and the following performance) can learn (and update) the dependency 
between the intent and the successful deployment decision.  

The idea behind the model-based orchestration proposed during the project is to formulate 
the intent-based node orchestration problem as a user-item engagement, i.e., utilize a 
recommendation system approach to narrow down the number of the suitable resource sets 
(FLUIDOS nodes). Modern recommendation algorithms are widely used in Big Data because 
of their ability consider both user and item features and infer dependency between user 
preferences and an item affinity to a user. Also, the important feature of recommendation 
algorithms is flexibility in updating recommendation as a new item is appearing in the system. 

Therefore, to recommend the FLUIDOS node, characterized by the available resources set, 
for the user, represented in the input intent, we are exploring Machine Learning (ML) 
approximation of Matrix Factorization (MF) [27]. When formulate the orchestration problem 
by means of recommendation approach the explicit intent can be represented in a form of a 
pod manifest (written in YAML). To adjust the manifest to be used by the model it is 
transformed into high dimensional sentence embeddings. These embeddings are feed into a 
feedforward neural network. The FLUIDOS nodes configurations (available resources and 
additional features, e.g., location) are represented by variable-length sequence feature 
vectors which are mapped to a dense vector representation via a node embedding layer. The 
FLUIDOS node embeddings are learnt jointly with all other model parameters through normal 
gradient descent backpropagation updates. The model then learns to predict the optimal 
node configuration for a given explicit intent. 

3.1.5 Orchestration on the Edge 

Utilizing cloud resources in IoT applications suffers from two limitations: high latency and high 
network bandwidth consumption. This is commonly addressed by shifting processing to 
hierarchical, layered network processing, i.e., at the edge, fog, and cloud layers. 

However, the new Edge computing solution can readily adapt to diverse sensor setups and 
settings thanks to the use of FLUIDOS Edge orchestrator. Instead of static deployments, the 
Edge orchestrator objective is to dynamically interact with the physical space and gather 
contextual information about the environment, which is used to select which sensors and 
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analytics workflows to conduct. Figure 11 depicts the overall vision based on the FLUIDOS 
edge architecture as defined in D2.1. The orchestrator manages services and edge resources, 
based on application intended metrics, such as response and reaction latency, or achieving 
good quality results of a particular deployed application, while incurring low computational, 
networking, and energy costs. Additionally, the edge orchestrator can benefit the needs in 
continually changing physical environments, and can guarantee resource-efficiency (e.g., 
generating less data, hence consuming less resources) and respect battery-operated sensitive 
devices. 

 

Figure 11 Orchestrating Edge Applications 

With FLUIDOS, edge orchestration in a networked IoT infrastructure aims to create a more 
intelligent system by automatically handling real-time edge events, traffic, or other dynamic 
demands at the network's edge. This allows for more efficient resource deployment and near-
instantaneous delivery of edge services. It can also assist in reallocating edge resources such 
as sensors or gateways with attached sensors among numerous edge devices. 

Our research related to FLUIDOS edge orchestrator concentrates on the FLUIDOS scheduling 
extensions, which utilizes the K8S scheduler tool responsible for scheduling the pods across 
available worker nodes in the cluster. Pods represent a group of one or more containers inside 
which applications are running; it is the smallest schedulable component, i.e., each pod must 
in the same execution environment. Scheduling is usually based on the pods’ resource 
constraints and requirements (e.g., Memory and CPU requirements), as well as the current 
resource utilization, most often independent of the total resources available. Hence, newly 
created pods, which form the smallest schedulable unit are scheduled on a suitable worker 
node with at least as many resources, usually with a fast best-fit algorithm. This algorithm 
performs two operations in sequence: filtering and scoring. Filtering constitutes a set of hard 
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constraints that a node must meet to be able to run the pod, while scoring is performed 
against a set of soft criteria. 

Worker nodes are responsible for deploying the pods. Besides the runtime environment, they 
also run different distributed services, such as kubelet for monitoring and ensuring that pods 
and their containers are healthy, and kube-proxy for both internal communications among 
worker nodes (via host subnetting) and external communications to the control plane (API 
server, scheduler, controller manager, and cluster store based on etc.). 

Since the default Kubernetes scheduler is not aware of the topology of the worker nodes, it 
often results in non-optimal pod placements that violate hardware/software performance 
requirements. Hence, since 2019, hundreds of published papers have focused on extending 
the current state-of-the-art in Kubernetes scheduling [18][19][20]. Furthermore, different 
practical projects are supported by the Kubernetes SIG Scheduling Group [21]. SIG is 
responsible for organizing components that make smart Pod placement decisions. Some of 
these projects contribute to configuration options that control the scheduler: node selection 
via label or affinity, inter-pod affinity and anti-affinity specifications, and placement using 
taints/tolerations that provide limits for node sets and pods; these options could also be used 
to handle in a rather abstract way data locality issues, inter-workload interferences, and 
deadlines. In addition to configuration options, K8S scheduler extensions are provided. They 
extend from calling an external process via HTTP(S), to executing custom filtering and scoring 
methods, to enabling multiple plugins per pod that operate on the pod queue, to directly 
modifying the default scheduler’s source code and executing custom schedulers (or related 
logic) per pod. 

Recent extensions (or algorithms tested in simulators) refer to generic scheduling, multi-
objective optimization, AI-based scheduling, and autoscaling-enabled scheduling for edge-
cloud, fog, or cloud-based configurations [18]. Very few solutions refer to edge computing, 
where resources are severely limited, and different challenges apply. The research outlined 
below reflects the current state-of-the-art in Kubernetes scheduling related to edge 
computing, where constraints related to criticality and soft or hard real-time, performance, 
scalability, energy-efficiency, and reliability is very important. 

Ogbuachi et al. used physical, operational, and network parameters and real-time monitoring 
information from node resources, such as load, temperature, and liveness, to improve fault 
tolerance and performance of dynamic orchestration in edge computing applications [22]. 

Haja et al. developed a custom, open-source Kubernetes scheduler extension that uses both 
periodic delay measurements across different edge nodes and edge reliability constraints 
[23]; this approach is suited for latency-sensitive edge applications. It is the only edge 
scheduler extension available in the open community. 
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Wojciechowski et al. utilized dynamic network measurements gathered automatically by a 
dedicated infrastructure layer (implemented via the Istio Service Mesh) to improve inter- 
application node bandwidth and response characteristics [24]. This approach is crucial for the 
adoption of Kubernetes in 5G use-cases. 

Oleghe used heuristic scheduling algorithms that use multi-objective optimization and graph 
network models concepts for container placement and migration in edge servers [25].  

Li et al. improved dynamic scheduling by considering the disk I/O load of worker nodes [26]. 
Balanced-Disk-IO-Priority (BDI) focuses on disk I/O balance across nodes, while Balanced-
CPU-Disk-IO-Priority (BCDI) considers CPU and disk I/O load imbalance on a single node. 

Our contribution focus on improving FLUIDOS scheduling in edge computing ecosystems. 
Within this context, we develop innovative context-aware Kubernetes scheduling methods 
based on automated simulated annealing. Our methods leverage key system/network 
statistics with cutting-edge partitioning algorithms for dynamic workload management and 
resource allocation. Within this area, we examine dynamic adaptation to changing conditions 
using monitoring and data analytics, such as network routing statistics, while also considering 
computational resources, energy constraints and real-time response needs of the edge 
nodes. In addition, we plan to concentrate on evaluating the effect of operating system 
(GNU/Linux) kernel scheduler support when scheduling real-time processes with Kubernetes, 
focusing on low-level kernel load balancing and task migration. 

Our open-source scheduler extensions will be evaluated using complex, dynamic workloads 
derived from realistic distributed embedded systems. More specifically, we plan to consider 
use-cases from IoT and Cyber-Physical Systems, related to Automotive, E-health, and robotics 
that involve delay-sensitive, bandwidth-intensive, power-efficiency, and reliability 
requirements. Different metrics such as performance, scalability, energy-efficiency, and 
reliability (e.g., computing node failures or restricted network connectivity due to network 
faults) will also be used to evaluate the efficiency of our scheduling extensions. 

In summary, recent related work in scheduling edge computing clusters has focused on small 
configurations of 3 to 12 nodes (and almost always 3 to 4 nodes) while the work here 
described aims primarily at large scale deployments. 

3.2 ARCHITECTURE 
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We now describe the high-level architecture of the Service Handler and the Node Meta-
Orchestrator components, as per the REAR protocol documentation4. These components, 
depicted in Figure 12, are the entry point for a user to interact with FLUIDOS. 

 

Figure 12 Meta-orchestrator conceptual architecture 

Namely, the Service Handler receives a request directly from the user either from the provided 
kubectl plugin5, or via direct API call. Upon receiving a request, the Service Handler inspects 
the payload to identify which meta-orchestrator is able to process such request. 

Currently, FLUIDOS node meta-orchestrator operationally supports three main 
methodologies. The first one relies on traditional K8S orchestration, thus leveraging the off-
the-shelves capabilities provided by Kubernetes. Thus, enforcing directly resource and node 
matcher information as provide by the user, and as available at the system level. The second 
methodology, presented in Section 3.2.1, leverages MSPL policy definition language, 
introduced in Section 2.1. Finally, Section 3.2.2 will present the model-based approach which 
expand traditional Kubernetes capabilities by inferring workload requirements based on 
priors, and explicit, user-defined, intent requirements. 

3.2.1 MSPL-based Meta-Orchestration 

 

4 https://github.com/fluidos-project/Docs/ 

5 https://github.com/fluidos-project/kubectl-fluidos-plugin 
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To illustrate the behaviour of the MSPL-based orchestration algorithm we have the following 
example (Figure 13), consisting of two Kubernetes clusters (SuperNode) located in Spain and 
Italy respectively, both connected to each other through Liqo. Despite each SuperNode 
would contain all the FLUIDOS modules, for the sake of comprehension we will only provide 
a simplified version, providing a subset of FLUIDOS modules in the first SuperNode. Thus, 
the figure includes the user that will trigger the policies, the Service Handler that will handle 
the request, the Node Orchestrator which will provide the meta-orchestration capabilities, as 
well as databases such as the ratings and metrics and resources available that will provide 
relevant information to the node orchestrator during the orchestration process. The second 
node is shown to illustrate the offloading step, so no modules have been represented on it.  

 

Figure 13 Example of MSPL-based orchestration algorithm. 

Regarding the workflow, we will illustrate an example in which the user provides a request 
that cannot be fully accomplished locally as the request contains hard constraints regarding 
the location of the deployment, so it requires specific resources from a specific geography 
location. This approach works as follows: 

1. The user wants to deploy two services (web and database) with certain requirements, 
so he models an MSPL policy that represents services and the associated constraints. 

2. The Service handler analyses the policy/intent type. As the policy was modelled as 
MSPL policy, the Service Handler realizes that the policy must be forwarded to a Node 
orchestrator that instantiates MSPL-based orchestration capabilities. 

3. The Node Orchestrator will decide to address it using the ILP-based solution so will 
model the problem as an ILP and solve it considering the use of RAM, CPU, and the 
defined constraints (soft and hard).  
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4. During the orchestration step (3), information regarding available resources, software, 
metrics, and information regarding the underlying architecture are required. 

5. Then a two-phase process will start, selecting in the first phase the best candidate 
software to use to deploy the service (e.g., Apache http, nginx, etc.) and finally 
determining which node is the most suitable to host the software.  

6. In the case of our example, for the HTTP server intent we would first select for example 
NGINX as software and then a local node of the cluster as host. For the database 
intent, in the first step we would select MySQL, and when choosing the host node, the 
algorithm would fail because there is no local node that meets the requirement of 
being in Italy. 

7. However, the algorithm would detect that the system has a fluid node (SuperNode 
Italy) that has a valid candidate, so it would perform a peering process and acquire the 
necessary resources thereby selecting that node as the final host.   

Regarding the policies provided by the user, Figure 14 shows an example of MSPL 
orchestration policy composed of two different policies. As MSPL were extended in FLUIDOS 
for also providing services and constraints, the models use a new capability “Service MANO” 
that allows describing services and the associated constraints. In this example, the first policy 
requires the deployment of a service of type “HTTP_SERVER”, and the constraints specify 
that the constraint type LATENCY must be less than 15ms. The second policy requires the 
deployment of a service of type “DATABASE” and it also specify as main constraint that the 
service must be geographically deployed in Italy. 

 

Figure 14 Example of an MSPL policy. 

It is important to highlight that despite in the example provided the second service is 
deployed using external resources as the constraint is based on the location, different kind of 
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constraints are considered (e.g., CPU, RAM, Disk, Latency…). This means, the first service 
could be also deployed in the remote node if for instance, the local node is congested and 
the remote node is able to fulfil the latency constraint. 

3.2.2 Model-based Meta-Orchestration 

From an architectural point of view, FLUIDOS’ model-based meta-orchestrator interacts with 
the local Kubernetes cluster through the operator paradigm, as presented in Figure 15. 
Namely, a Kubernetes Operator is a software component that reacts to events generated 
within Kubernetes as Resources are created, deleted, and updated. Specifically, we defined 
a new Custom Resource named `ModelBasedDeployment` to represent deployment requests 
defined through intents. Note that in this case the term “deployment” refers to the request 
of a user to deploy a given workload within the continuum. 

 

Figure 15 High level K8S Operator Paradigm 

Namely, once a user request to deploy a workload, either expressed as Deployment or Pod, 
in FLUIDOS through the provide command line tool6, this CLI 7 will wrap the request within a 
resource of type `ModelBasedDeployment`. This will cause the invocation of the Operator API 
of our custom operator. 

Internally, the operator inspects and processes the request to identify, and expand, the intent 
defined within the request. Subsequently, the operator interacts with the ML component, 
which has been briefly introduced in Section 3.2.2. From an operational point of view, this 
component translates the workload information, including container image information, and 
explicit and implicit intents to a feature vector that is in turn used to perform a prediction with 

 

6https://github.com/fluidos-project/Docs/tree/main/Work%20Packages/WP4#bonus-cli-
extension 

7 https://github.com/fluidos-project/kubectl-fluidos-plugin/ 

OPERATOR

CUSTOM RESOURCE

INTERACTS
WITH

W
AT
CH

ADJUST
STATE



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 46 of 69 

 

the provided model. The first version of the model can process explicit intents, such as CPU, 
Memory, Latency, Throughput and Location, as shown in the example of Figure 17. 

  

Figure 16 High Level FLUIDOS Model-based Meta-Orchestrator 

 

Future updates will focus on the integration of pod image(s) fingerprints and real-time node 
resources usage information to the model to further fine-tune the placement prediction. 

 

Figure 17 Example of pod manifest with explicit intent 

The model then returns a template representing the resources required to execute the 
provided workload in such a manner that the associated user intent is satisfied. These 
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resources include hardware characteristics, such as memory and processor values, the need 
to have access toa a GPU, computational and service characteristics, such as access to certain 
API servers, or database, and further meta-information including location, compliance 
guarantees, and security standards that the receiving nodes should provide. 

The operator users this template to identify, with the Solver component, suitable resources 
locally and remotely. This is done by interacting with the REAR API, which allows exploring 
the resources offered, through the REAR protocol8, by the participants of the continuum. 

Material access to the remote resources is again done via interaction with the REAR API, which 
in turn leverages Liqo. 

The current version of FLUIDOS model-based-meta-orchestrator is available as open source9. 
It is implemented in Python taking advantage of both native Kubernetes python API10, and 
the Kubernetes Operator Framework11. 

 

8 https://github.com/fluidos-project/REAR 

9 https://github.com/fluidos-project/fluidos-modelbased-metaorchestrator 

10 https://github.com/kubernetes-client/python 

11 https://kopf.readthedocs.io/en/stable/ 
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4 PRIVACY & SECURITY OF MODEL-BASED 
INTENT-DRIVEN META-ORCHESTRATION 

As indicated in the previous sections, AI-based algorithms for resource or workload allocation 
are a necessity, especially given the complexity of a dynamic, fluid, environment. 

This scenario raises two main challenges. First, there is a concern with respect to how models, 
and models’ predictions might leak private and sensitive information. This requires the models 
to be trained borrowing techniques from the privacy domain. Thus, we explore existing and 
novel AI-based approaches used for orchestration to adapt them to the FLUIDOS framework 
and add privacy constraints in the algorithm design/training. The second challenge derives 
from the ever increasing demand for data to train complex AI models. The established 
approach to the second challenge is to use a collaborative approach. Namely to share, 
perhaps publicly, large volumes of data to allow creation of more powerful and performant 
AI-based services. In an industrial scenario this would be a major concern, primarily because 
an internal dataset can potentially leak sensitive information, even when apparently 
anonymized. Moreover, traditional anonymization techniques are focused on protecting 
privacy of individuals, or of sensitive data-characteristics in this case. A well-established 
technique to collaboratively train complex models without releasing dataset is Federated 
Learning (FL). We plan to leverage techniques such as FL where FLUIDOS nodes 
collaboratively train AI model(s) without exchanging or collecting data, or differential privacy 
techniques where noise is added to data samples to preserve privacy to cite a few examples. 

In the context of these challenges, we investigate how privacy-preserving machine learning 
(PPML) algorithms can be used to achieve two things at the same time: 

1. facilitate FLUIDOS architecture with fundamental functionalities, and 
2. protect the data, models, systems, and networks involved in the construction of said 

models within FLUIDOS infrastructure, from various adversarial attacks. 

This exploration is motivated by recent findings in both academic and industrial research, 
which have shown that adversaries can execute a range of attacks aimed at extracting sensitive 
information from the parameters of the ML model and the data it utilises. Notably, these 
attacks encompass inference attacks, data reconstruction, and poison attacks. In response to 
these threats, researchers have introduced several countermeasures, falling into three primary 
categories: (i) homomorphic encryption, (ii) multi-party computation (MPC), and (iii) differential 
privacy (DP). However, these countermeasures are not without their drawbacks, as they often 
grapple with privacy, performance, utility, and fairness limitations. Also, homomorphic 
encryption, while practical, is constrained by its support for only a limited set of arithmetic 
operations in the encrypted domain. Fully homomorphic encryption, which allows arbitrary 
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operations, carries a significant computational overhead that hampers scalability. Similarly, 
solutions based on multi-party computation introduce substantial computational burdens and 
scalability limitations. Moreover, in some instances, differential privacy may fall short of 
delivering sufficient privacy when incorrectly applied or in cases of misguided trust 
assumptions, such as local DP versus central DP. Furthermore, if not harmoniously integrated 
with other critical aspects of the ML model, such as utility and fairness, it may adversely affect 
these dimensions. 

In the next paragraphs, we cover the basic concepts that are used in our work, such as DP, 
FL, hierarchical FL, asynchronous FL, and combinations of them to achieve the objectives. 
These combinations are employed to train useful and privacy-preserving ML models for these 
functions within the FLUIDOS architecture. Towards this goal, we review important literature 
for these concepts. Then, we introduce our two novel approaches to train AI models in (a) 
hierarchical FL fashion, (b) asynchronous FL fashion, both designed to protect the model from 
adversarial attacks using differential privacy. 

4.1 BACKGROUND 

4.1.1 Differential Privacy 

Differential Privacy (DP), introduced by Dwork et al. [35], is a foundational concept in privacy-
preserving data analysis. To define DP, let ε be a positive real number, and consider a 
randomized algorithm A that takes a dataset as its input. An algorithm A is said to provide ε-
DP if, for all datasets D1 and D2 that differ by a single element, and for all subsets O of the 
outcomes generated by running A: 

 

This definition holds with the probability taken over the randomness of algorithm A. ε, often 
referred to as the privacy budget, quantifies the level of privacy protection provided. DP is 
achieved by adding noise selected from a specific distribution, which ensures the 
indistinguishability guarantee previously mentioned. 

The traditional model of DP, known as the central DP (CDP) model, implicitly assumes the 
existence of a trusted entity that faithfully follows the protocol and introduces calibrated noise 
to guarantee DP. Consequently, the outcomes become differentially private through post-
processing. However, in various real-world scenarios, these strong trust assumptions may not 
hold. To address this, the local DP (LDP) model assumes that each data contributor locally 
adds DP noise, i.e., in-situ, making sure that their inputs themselves are DP. Thus, any function 
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computed on top of these DP inputs becomes DP through post-processing. Nevertheless, 
this approach has limited knowledge of the overall function being computed across the data 
and tends to overestimate the amount of noise required for privacy, therefore leading to loss 
of utility of the model trained. 

The relationship between LDP and CDP hinges on the mechanism used to achieve DP. For 
example, the Laplacian mechanism ensures that ε-LDP also provides ε-CDP, illustrating the 
connection between these two approaches. 

In this task, we leverage the principles of DP and its various iterations to craft efficient and 
effective PPML algorithms that can be used within the FLUIDOS infrastructure during e.g., 
resource orchestration. 

4.1.2 Federated Learning 

Federated Learning (FL) is a prominent option for deploying privacy-preserving ML [35]. FL 
offers a multitude of advantages and aligns with the pursuit of an ideal PPML algorithm, one 
that can train machine learning models beneficial to both centralised and distributed parties 
while avoiding exposure to unauthorised entities. In FL, the essential data required for ML 
model training is not directly transmitted between the parties, comprising clients and a central 
server. Instead, the process involves the distribution of model training across individual 
devices (clients) that possess localised data shards for training their respective local models. 
The global server subsequently collects and aggregates these local models to create a unified 
global FL model. 

When compared to centralised approaches, FL presents a larger attack surface, primarily due 
to the following factors: 

• Data distribution: The dispersion of training data across multiple devices heightens 
the risk of data breaches and attacks on individual devices with varying security levels. 

• Communication channels: The communication between the central server and 
participating devices occurs over potentially insecure networks, rendering it 
susceptible to interception, eavesdropping, or man-in-the-middle attacks. 

• Client-side vulnerabilities: Vulnerabilities within client or edge devices can be 
exploited, potentially compromising the integrity of the training process. 

• Aggregation and model updates: The central server's role in aggregating model 
updates creates a potential vulnerability, with malicious clients having the capability 
to manipulate or poison updates, thereby compromising the integrity and fairness of 
global models. 

• Privacy concerns: While FL aims to enhance data privacy by circumventing the 
necessity to share raw data for model training, it is not immune to attacks that seek to 
undermine the privacy of training data. 
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To mitigate these risks and reduce the overall attack surface in the adopting infrastructure 
(e.g., FLUIDOS), it is imperative to implement robust privacy and security measures. These 
encompass secure communication protocols, encryption techniques, device authentication 
mechanisms, access controls, PPML methods, fairness assurance procedures, and the regular 
conduct of security audits. 

4.1.3 Federated learning with Differential Privacy 

In the pursuit of privacy-preserving machine learning executed in a decentralised or federated 
manner such as in the case of FLUIDOS architecture, several notable advancements have been 
made in the integration of DP with FL. McMahan et al. [36] were among the first to propose 
an approach that combined DP and FL, offering formal privacy guarantees. Similarly, Geyer 
et al. [38] put forward ideas in this domain. However, in both settings, the FL central 
aggregator had access to either noise-free gradients or noisy gradients from the participating 
clients, raising privacy concerns. To address this issue, Bonawitz et al. [39][40] introduced the 
concept of secure aggregation, which is a variant of MPC. Secure aggregation provides the 
central aggregator with an aggregated perspective of all gradients, irrespective of whether 
they are noisy or noise-free, effectively breaking the connection that could compromise 
privacy. 

In a further development, Truex et al. [41] harnessed advancements from both LDP and MPC, 
employing threshold cryptography schemes to create a hybrid approach that offers enhanced 
privacy protection. Truex and colleagues [42] also proposed an approach that utilises LDP, 
albeit based on an alternative DP definition. 

In this task, we harness synergies between FL and DP technologies, alongside the various 
innovative variants that have emerged, to craft privacy-preserving machine learning 
algorithms that are not only effective but also efficient, all within the framework of 
decentralised or federated execution. 

4.1.4 Hierarchical Federated Learning 

Abad et al. [43] have introduced a mechanism designed to facilitate communication-efficient 
and coordinated learning within the framework of Hierarchical Federated Learning (HFL). In 
this context, the concept of hierarchies is derived from the presence of clients communicating 
with smaller base stations or cellular towers, acting as intermediaries. These intermediaries, 
in turn, establish communication with macro base stations or the central aggregator. This 
hierarchical structure optimizes the learning process by efficiently managing communication 
flows. 
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Similarly, Yuan et al. [44] have put forth a novel protocol aimed at enhancing communication 
efficiency in the Local Area Network-Wide Area Network (LAN-WAN) setting. This form of HFL 
differs significantly from the approach advocated by Briggs et al. [45], which focuses on 
segregating clusters of similar clients that can be independently trained using heterogeneous 
models. In all these prior works, a common thread is maintained: federated clients, much like 
the standard approach, interact with intermediary entities, which, in the case of Abad et al. 
[43], are the base stations. These intermediaries play a crucial role in consolidating 
information, typically on behalf of a subset of clients, to be communicated to the central 
aggregator(s), thus facilitating collaborative and efficient learning. 

Therefore, we make use of the implicit and explicit hierarchies that exist in nowadays networks 
(including the one envisioned by the resources of FLUIDOS infrastructure), as well as the 
technologies of FL with DP and their different variants, to design scalable, hierarchical-based, 
privacy-preserving ML algorithms that are executed in a decentralized/federated fashion. 

4.1.5 Asynchronous Federated Learning 

In the traditional FL paradigm, FL clients coordinate (synchronize) their training process. More 
precisely, they train local models on their datasets and periodically synchronize them with a 
central aggregator server. This synchronization, initiated and orchestrated by the server, 
ensures alignment among clients and collective updates of the global model in each round. 
There often are two main challenges in synchronous FL: scalability and dealing with stragglers. 

Scalability is a critical concern, particularly in large-scale settings with many clients, as only a 
proportion of them may be accessible at any given time for training. Managing the training 
process across many clients can thus prompt significant challenges, encompassing tasks such 
as efficient communication, minimizing network congestion, and optimizing computational 
resources to accommodate the scale of the FL system. Additionally, the presence of 
stragglers, i.e., clients whose training progress is considerably slower than others, causes 
delays in the synchronization process and further complicates the learning process. To 
overcome these issues, the notion of Asynchronous FL (AFL) has been proposed as a variant 
to the FL framework where the communication between the clients and the central server is 
not coordinated in real-time [46]. The clients are not required to wait for other clients to 
complete their training rounds before sending their updates to the server. Rather, they can 
initiate communication with the server as soon as they complete their local training. This 
allows for more flexibility in the training process, as clients can proceed at their own pace and 
contribute updates whenever they are ready. 

While AFL addresses some challenges, it also introduces new ones, including dealing with the 
heterogeneity of client devices, outdated updates, communication bottlenecks, etc. 
Nonetheless, various techniques in AFL can be used to ensure an effective training process 
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[47][48][49][50][51]. In this work and task, we focused on the Buffered AFL [51], which has been 
shown to be more efficient than other AFL methods. 

4.1.6 Buffered Asynchronous Federated Learning 

Nguyen et al. [51] present a framework for Async-FL called FedBuff. Fedbuff uses a server-
side buffer for aggregation incorporating client-level DP. More precisely, its implementation 
uses the Differentially Private Follow-the-Regularized-Leader (DP-FTRL) technique proposed 
in Kairouz et al. [52]. Unlike other AFL techniques, the server model is not immediately 
updated upon receiving each client’s update; rather, the updates are stored in a buffer. A 
server update is only executed when the buffer includes K client updates. Nguyen et al. argue 
that K = 10 is the optimal buffer size; thus, we use the same value in the rest of this work. 

4.2 HIERARCHICAL FEDERATED LEARNING MEETS 
DIFFERENTIAL PRIVACY 

FL requires K ≤ N online federated clients per round to jointly learn a model with the central 
aggregator. This is a total of 2 actors, at 2 conceptual levels (client vs. server). In our setup, 
we assume the existence of 3 main actors, at 3 different (conceptual) levels of the hierarchy 
(as shown in Figure 18). At level 0 (i.e., the lowest level), we have the federated clients, who 
hold private data as in the status quo. At level 2 (i.e., the highest level), we have the central 
aggregator, again as in the status quo. The key difference lies in the middle; at level 1 (i.e., 
the intermediate level), we introduce a new entity called the super-node. The super-node is 
responsible for processing requests from a subset of the online clients in a particular region, 
henceforth termed a zone. The presence of level 1 introduces a hierarchical approach to 
performing FL (like those discussed earlier). The key distinction in our proposal is in how the 
super-nodes are chosen: they are elected by a pool of their peers, and thus are within the 
same trust boundary/region as their peers. Note that there can be many intermediary layers 
in practice, but we limit to one for simplicity of exposition. 



 

FLUIDOS | D4.1: Intent-based decentralised FLUIDOS continuum (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 54 of 69 

 

 

Figure 18 Architectural overview of our attack setup. Locally learnt gradients are perturbed 
with noise to provide DP guarantees. This ensures the gradients viewed by the aggregator 

are less noise. Adversarial nodes can be present at level 0 or 1 

4.2.1 Impact on Scalability 

Hierarchical FL improves the scalability of FL through the tiered architecture. The central 
aggregator is no longer required to process and respond to the federated clients directly 
(which are in the order of millions), but only interact with the super-nodes (which are 1-2 orders 
of magnitude lower). Additionally, the super-nodes and the clients in a particular zone can 
perform federated learning independently; this has the potential to further reduce the 
frequency of interaction with the central aggregator. 

4.2.2 Impact on Privacy 

In the status quo, formal privacy guarantees in the FL setting are provided through 
differentially private learning [53], where noise is added to the gradients during training [54]. 
This in turn is obtained through two mechanisms: noise addition at the central aggregator 
(i.e., CDP), or noise addition locally at each federated client (i.e., LDP). Empirical evidence 
suggests that the CDP mechanism will result in a more accurate (final) model learnt. However, 
it makes a crucial assumption: the central aggregator (where the noise is added) is considered 
trustworthy. The LDP mechanism removes this trust assumption at the expense of greater 
noise addition (at each client). To provide the best of both worlds, we propose hierarchical 
DP (or HDP). Based on the construction described above, clients aggregate their (zonal-level) 
updates through the super-nodes where calibrated noise is added to provide the DP 
guarantee. Through the remainder of this text, we will describe modifications made to the 
traditional approach to FL to achieve HDP. 
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Figure 19 Modified FL mechanism with zonal privacy. 

4.2.3 Proposed Algorithm 

The algorithm presented in Figure 19 is heavily based on the approach taken by McMahan et 
al. [55], with some key modifications to incorporate hierarchical FL for S zones. From line 11, 
observe that gradient aggregation first occurs at a zonal level. This in turn leads to 
recalibration of various parameters (lines 12-19) required to provide the DP guarantee. Finally, 
the noised zonal gradients are averaged and aggregated in line 21. Note that in scenarios 
where uniform weighting is applied (i.e., the contribution of each client is the same), wk = 1. 
Additionally, the variance of the noise to be added (σi in line 19) is calculated as a function of 
the online clients per zone (as noted by the denominator term: qW or qWmin), and not the total 
fraction of clients across all zones, as W is re-calibrated based on the selected clients per 
round per zone. The proposed approach calculates the sensitivity based on the clipping 
bound Si that is calculated across all clients across all zones. Obtaining this information in 
practice will require additional communication between the super-nodes. Thus, this is 
approximated through the existence of a global clipping bound C such that C ≥ maxi ∈[S] Si 

 

4.2.3.1 Algorithmic Correctness 
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Despite the presence of the intermediary level, algorithmic correctness must be preserved 
i.e., the aggregator must ensure that the final value that it obtains (and propagates) is the 
same as that obtained in the baseline FedAvg scenario [55]. To this end, we generalize the 
construction described earlier as follows: there are a total of S super-nodes in the intermediary 
level, each responsible for its own zone. Each zone has an equal number of clients. While this 
simplifying assumption enables easier calculation, this can be relaxed in practice. The 
federated clients within each zone clip their gradients (as is common in ML) and set the 
clipping norm to a global constant C, i.e., all participants (at any level of the hierarchy) are 
aware of the clipping threshold. Once these gradients are received, the super-node adds 
noise after performing the operation listed next. To achieve correctness, two operations can 
be performed at the intermediary level: (a) strict summation where the super-node aggregates 
the received gradients, or (b) averaging where the super-node aggregates and averages (by 
the number of clients in the zone) the gradients received. We describe both below. 

Case 1: Only summation at the intermediary level. In this scenario, each of the S super-nodes 
is responsible for aggregating the values from K/S = m clients. Let ci denote the gradient 
update of client i. After clipping the gradients (using flat clipping), the value of each gradient 
is ci, where λ = max(1, ||ci||2 /C) and ||.||2 denotes the 2-norm. Thus, when the super-nodes 
perform summation, the maximum value obtainable is m.ci / λ ≤ m.γ / λ, where −γ < ci ≤ 
γ,∀i. 

Gaussian noise (required to provide DP) is added proportional to the l2-sensitivity of the 
summation function, which in this case is proportional to 1/λ. To ensure correctness in this 
case, the central aggregator is responsible for averaging (that is not performed by the super-
nodes) and does so over the total of K clients. 

Case 2: Averaging at the intermediary level. In this scenario, each of the S super-nodes is 
responsible for averaging the aggregated values. Thus, the average is calculated as: 

. The maximum achievable average is γ/m·λ , and thus the l2 sensitivity is 
proportional to 1/m·λ. In such a situation, the central aggregator will have to average by the 
number of super-nodes (i.e., S) to preserve algorithmic correctness (since each super-node 
only averages by the number of clients it is responsible for). 

Note that m > 1. Thus, the l2-sensitivity in case 2 is smaller than in case 1. Thus, noise addition 
in case 2 would be lower than that of case 1, ergo utility obtained in case 1 would be lower 
than in case 2. Thus, in our hierarchical FL setup, we advocate designing hierarchies such that 
the super-nodes always perform averaging. 

 

4.2.4 Evaluation 
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We implement our proposed approach using tensorflow (TF). We use a combination of 
tensorflow-federated v0.16.1 to provide the components required for FL, and tensorflow-
privacy to provide the machinery required for private learning12. Such a framework allows us 
to calibrate for the clipping norm C and the noise multiplier z13. Any modifications to either 
of them will result in implications to both accuracy and privacy. To ensure correct accounting, 
we modify the accounting libraries in tensorflow-privacy to accurately reflect sampling 
probability and number of iterations (in this case, rounds). To evaluate the efficacy of our 
approach, we consider the datasets listed in Table 1. Only the EMNIST dataset is modified to 
exhibit the non-i.i.d properties that are commonly associated with FL. The datasets follow a 
standard 80:20 split (80% is used for training, and the remaining is used for validation). All our 
experiments were executed on a server with 2 NVidia Titan XP with 128 GB RAM and 48 CPU 
cores running Ubuntu 20.04.2. Due to computational constraints, and issues in tensorflow-
federated related to GPU execution14, our experimental setup is conservative; we only 
perform a single run of each configuration and are unable to report error bars. However, we 
replicate the ecosystem chosen in prior work. 

 

Through our evaluation, we wish to answer the following question: Does the proposed 
hierarchical scheme truly provide advantageous privacy vs. utility trade-offs in comparison to 
using LDP and/or CDP? Recall that LDP provides more privacy, while CDP is known to provide 
a more utilitarian model. To this end, we evaluate our scheme based on the datasets and 
models specified in our proposed framework earlier. To ensure a fair comparison, we only 
report the privacy budget ε calculated at the central aggregator level in our results. 

We first train without DP to get an estimate of the 2−norm of the gradients. This helps us 
estimate the clipping norm (C) to be used during DP training. We also observe the training 
duration (i.e., exact epoch number) at which the validation accuracy saturates. Once this is 
obtained, we configure the noise multiplier (z) to enable DP training and log the privacy 

 

12 https://github.com/tensorflow/federated/tree/v0.16.1 and https://github.com/tensorflow/privacy  

13 https://github.com/tensorflow/federated/issues/832 

 

https://github.com/tensorflow/federated/tree/v0.16.1
https://github.com/tensorflow/privacy
https://github.com/tensorflow/federated/issues/832
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expenditure (ε) at the end of training. Note that our training results, configurations, datasets, 
and models are similar to those of prior work in this area. 

Privacy vs. Utility: Observe that different strategies of applying DP noise (i.e., central vs. local 
vs. hierarchical) result in differing values of privacy expenditure. To ensure a fair comparison 
of privacy vs. utility, we convert the privacy expenditure in all settings to that of the central 
DP privacy expenditure (using the formulation presented earlier). We can then plot the 
validation accuracy as a function of training duration, for all the datasets we consider. We also 
consider a scenario without any form of DP training enabled; this is our baseline. Note that 
for the hierarchical DP setting, we consider a scenario where there are S = 10 super-nodes. 
The results are plotted in Figure 20. 

 

Figure 20 We plot the validation accuracy of training with DP for 3 scenarios: (i) central DP, 
(ii) local DP, and (iii) the proposed hierarchical DP. 

Observe that for our chosen configuration, learning simple tasks such as EMNIST (refer Figure 
22 We plot the validation accuracy as a function of privacy for 3 scenarios using HDP: (i) K = 
100, (ii) K=200, and (iii) K = 300.) with DP is achievable in all three settings, i.e., the accuracy 
degradation induced by LDP in comparison to CDP is minimal. However, as expected, HDP 
provides advantageous trade-offs in terms of accuracy. The results are more interesting for 
more complex datasets such as CIFAR-10 and CIFAR-100. First, observe that for the 
configuration we choose (i.e., N = 500, K = 100), baseline accuracy is ∼ 63% and ∼ 28% for 
the two CIFAR versions, respectively. Note that these values are comparable to those 
achieved by McMahan et al.12. Training with privacy (CDP) degrades this accuracy further. 
However, as expected, HDP can provide advantageous trade-offs in terms of privacy and 
accuracy. Note that CIFAR-100 is naively at least 10× more complex a learning task than 
CIFAR-10, and yet HDP achieves similar utility to CDP, and much higher than LDP. 

Finally, methods. Contains corresponding values of the privacy budget achieved at the end 
of training. Observe that the privacy budget calculated at the end of HDP training is in-
between that of the CDP and LDP case. In fact, with nearly a 67% decrease in privacy 
expenditure, HDP can achieve nearly the same accuracy as the CDP case across all 3 datasets 
we consider. 
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Figure 21 Privacy expenditure across datasets and DP methods. 

The Influence of S: From our analysis, we can see that increasing the value of S makes the 
scheme more private (the privacy calculation is inversely proportional to the value of S). To 
better understand this hyperparameter, we consider an experimental setting where we vary 
the value of K to 100, 200, and 300. Across these 3 settings, we vary the value of S to one of 
{10, 20, 30, 40, 50} across all datasets. All other hyper-parameters were kept the same as in 
the earlier experiment. We then measure the validation accuracy and vary the configurations 
of C and z to obtain the privacy expenditure. We plot the relationship between the fully 
trained model’s validation accuracy and the privacy budget expended to achieve it in Figure 
22. Across all datasets we observe a common trend: the validation accuracy calculated 
increases as the privacy expenditure does. For the datasets we consider, increasing the value 
of K does not increase the validation accuracy substantially. This is not indicative of a more 
general trend; one would assume that increasing the number of parties (K) would result in a 
more accurate model. 

 

Figure 22 We plot the validation accuracy as a function of privacy for 3 scenarios using HDP: 
(i) K = 100, (ii) K=200, and (iii) K = 300. 

4.3 ASYNCHRONOUS FEDERATED LEARNING WITH 
LOCAL DIFFERENTIAL PRIVACY 

Prior work in AFL has only studied CDP (as shown by Nguyen et al.). As mentioned earlier, 
this requires the server to be trusted with access to the clients’ individual updates, and the 
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responsibility of correctly adding DP noise to the aggregated updates. The first issue could, 
in theory, be mitigated using secure multi-party computation (i.e., performing secure 
aggregation so that the server can only recover the aggregates). However, this often comes 
with prohibitively high computational overhead. The second issue remains unmitigated. This 
prompts the need to build AFL techniques that satisfy Local DP (LDP), allowing clients to enjoy 
sound privacy guarantees vis-à-vis both the server and other adversarial clients. 

In our approach, we introduce the first technique (to our knowledge) to guarantee LDP in AFL. 
We base our method on FedBuff (from Nguyen et al.) but modify it to achieve LDP guarantees 
without compromising utility. 

Notes: We assume the presence of C distributed clients. Dc denotes client c’s data, and nc is 
the number of data points on c, i.e., n = |Dc|. θc is the local model parameter. The 
optimization function of each client is:  

 

where l represents the loss function of the corresponding data point. Consequently, the 
aggregated optimization function is: 

 

where θ is the model at the server side, and the goal is to find the optimized one (θ∗) for:  

 

 

4.3.1 Proposed Algorithm 

In Figure 23 we detail our approach for achieving LDP in Buffered AFL. The FL process starts 
with the server generating a model with randomized weights. This model is then distributed 
to all participating clients. Each client independently trains this initial model on its respective 
dataset. During the training process, and to satisfy LDP, gradients are clipped to limit their 
magnitude, and each client adds Gaussian noise. The resulting privacy guarantees have been 
investigated in prior work and formally proven by Kim et al. [56] and Mahawaga Arachchige 
et al. [57]. 
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In AFL, there is no concept of rounds. Instead, each client sends its updates to the server as 
soon as they are available. The server aggregates these updates by inserting them into a 
buffer. When the buffer becomes full, the server performs a staleness control on the updates 
before aggregating them to ensure that all updates are consistent with the current model. 
This phase follows the same approach as Nguyen et al. and Huba et al. in handling stale 
updates. Once the check is completed, the server aggregates the updates to obtain a new 
model (with a new version denoted as r), which is then distributed to all clients for further 
training. 

 

Figure 23 Local Differential Privacy in Buffered AFL (FedBuff+LDP) 

 

4.3.2 Evaluation 

Our experiments use three different datasets: CIFAR-10 [58], CINIC-10 [59] and reddit-
comments15. CIFAR-10 includes 60,000 labelled images (50,000 training and 10,000 testing), 
each depicting one of ten object classes, with 6,000 images per class. CINIC-10 has 10 classes 

 

15 https://bit.ly/google-reddit-comms 
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and 270,000 images, 180,000 of which are used for training and 90,000 for testing. To train 
on CIFAR-10 and CINIC-10 datasets, we use the lightweight ResNet18 CNN model [60]. We 
also consider a word prediction task using the Reddit-comments dataset. We use a model 
with a two-layer Long Short-Term Memory (LSTM) and 10 million parameters trained on a 
chosen month (September 2019) from the Reddit-comments dataset, and we filter users with 
several posts between 350 and 500. Our training setup is like past work [61], and our 
dictionary is restricted to the 30K most frequent words (instead of 50K) to speed up training 
and boost model accuracy. 

To partition the CIFAR-10 and CINIC-10 datasets, we follow the approach of past work of 
Nguyen et al. and use a Dirichlet distribution with parameter 0.1 to divide the dataset among 
5000 non-iid clients. For Reddit-comments, the filtered-out users are recognized as clients 
with their posts as their training data. Following Nguyen et al., we set the buffer size to 10. 
We experiment with different values of concurrency, i.e., the number of clients training at a 
particular time. We sample the staleness of clients from a half-normal distribution with σ = 
0.5. 

In Figure 24, we report the model performance with respect to test accuracy of FedBuff+LDP 
(our algorithm) compared to FedBuff+DP-FTRL (providing Central DP) across an increasing 
number of communication trips, which encompass download, computation, and upload. 
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Figure 24 Main task accuracy in buffered async FL with LDP in different communication trips. 

Then, in Figure 25, we present the accuracy results of each model for different privacy 
budgets, for the three datasets and models and the two tested methods. 
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Figure 25 Main task accuracy in buffered async FL with LDP for three datasets with varying 
privacy budgets ε (lower ε provides better privacy). 

Overall, our experiments show that, under the same privacy budget (i.e., with the same 
epsilon values), FedBuff+LDP provides better accuracy than FedBuff DP-FTRL. It also does 
this faster, i.e., FedBuff+LDP enables the construction of a global model that achieves higher 
accuracy faster with respect to communication trips. Note that using the same epsilon values 
in Local vs. Central DP variants does not necessarily imply the same level of privacy since 
these values have different meanings in either setting. 

Finally, Figure 26 shows the number of communication trips needed to reach a certain 
accuracy for the three datasets. The results are averaged over five random runs, and the 
standard deviation is computed based on these runs. Again, we observe that FedBuff+LDP 
picks up better accuracy and faster – i.e., in fewer trips – than FedBuff+DP-FTRL. 

 

Figure 26 Average ± standard deviation number of communication trips (in thousands) to 
reach a target accuracy in the three datasets with ε = 8 and K = 10. Standard deviation is 

computed over 5 random runs of each setting with different seeds. 
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