

 Grant Agreement No.: 101070473

Call: HORIZON-CL4-2021-DATA-01

Topic: HORIZON-CL4-2021-DATA-01-05

Type of action: HORIZON-RIA

D9.1 DEVELOPMENT ENVIRONMENT AND

CI/CD WORKFLOWS

Revision: v.0.3

Work package WP 9

Task Task 9.1

Due date 28/02/2023

Submission date 31/01/2023

Deliverable lead UMU

Version 0.3

Authors Antonio Skarmeta (UMU)

Reviewers Andy Edmonds (TER)

Ref. Ares(2023)1359749 - 23/02/2023

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 2 of 29

Abstract Documentation of the CI/CD environment and the tools selected.

Keywords Agile Integration, testing, continuous integration, continuous delivery

DOCUMENT REVISION HISTORY
Version Date Description of change List of contributor(s)

V0.3 31/01/2023 1st version of the document Eduardo Cánovas (UMU)

José Francisco Pérez (UMU)

DISCLAIMER

The information, documentation and figures available in this deliverable are written by the
"Flexible, scaLable and secUre decentralIzeD Operating System" (FLUIDOS) project’s
consortium under EC grant agreement 101070473 and do not necessarily reflect the views of
the European Commission.The European Commission is not liable for any use that may be
made of the information contained herein.

COPYRIGHT NOTICE

© 2022 - 2025 FLUIDOS Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: R

Dissemination Level

PU Public, fully open, e.g. web X

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

DATA: Data sets, microdata, etc

DMP: Data management plan

ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues

OTHER: Software, technical diagram, algorithms, models, etc.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 3 of 29

EXECUTIVE SUMMARY

The purpose of this document is to provide a single point of reference on the project
procedures, and acts as an initial report and the deliverable outcome regarding the activities
of WP9 “FLUIDOS Agile integration & testing”. Its objective is to accompany and document
the technical requirements related to the FLUIDOS CI/CD platform as well as the FLUIDOS
Development and Testing Environment as used in the deployment and testing of the
FLUIDOS artefacts.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 4 of 29

TABLE OF CONTENTS

EXECUTIVE SUMMARY3TABLE OF CONTENTS

 4LIST OF FIGURES5LIST OF TABLES
 6ABBREVIATIONS 71
 INTRODUCTION 81.1
 Deliverable Overview 81.2
 Document Structure 81.3
 Document Scope 91.4
 General objectives 92
 AGILE INTEGRATION 102.1
 Sprint Management and Agile Scrum Concepts 102.1.1
 Organisation 102.1.2
 Sprints 122.1.3
 Agile Tools 132.2
 Documentation of the possible Software Tools 133
 CONTINUOUS INTEGRATION 163.1
 DevOps and CI/CD practices 163.2
 Overview of Continuous Integration/Continuous Delivery Selected Software Tools
and Environment 173.3
 Continuous Integration/Continuous Delivery Stack and Methodology 173.4
 CI/CD Scenarios and selected tools 173.4.1
 Scenario 1 (Self Managed) 193.4.2
 Scenario 2 (Lightweight Alternative) 223.4.3
 Optional Components 244
 SECURITY PRACTICES FOR THE CONTINUOUS INTEGRATION/CONTINUOUS DELIVERY

PLATFORM AND DEVELOPMENT & TESTING ENVIRONMENT 265
 CONCLUSIONS 28REFERENCES

 29

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 5 of 29

LIST OF FIGURES

FIGURE 1: BUILD-MEASURE-LEARN 10FIGURE 2: SCRUM TEAM 12FIGURE 3: SCENARIO 1

WORKFLOW 20FIGURE 4: CI/CD TOOLS USED IN SCENARIO 1 FLUIDOS 21FIGURE 5:

SCENARIO 2 WORKFLOW 22

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 6 of 29

 LIST OF TABLES

TABLE 1 : SCENARIO 1 CORE TOOLS22TABLE 2 : SCENARIO 2 CORE TOOLS

 24

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 7 of 29

ABBREVIATIONS

CA Certificate Authority

CD Continuous Deployment - Continuous Delivery

CI Continuous Integration

Dx Deliverable (where x defines the deliverable identification number, e.g., D1.1)

DevOps Software Development (Dev) and IT Operations (Ops)

DoS Denial of Service

EU European Union

HTTPS Hypertext Transfer Protocol Secure

IAM Identity and Access Management

ICMP Internet Control Message Protocol

LAND Local Area Network Denial

MitM Man-in-the-middle

SCM Source Code Management

SSH Secure Shell Protocol

SSL Secure Sockets Layer

SSO Single sign-on

SYN Synchronized

Tx Task (where x defines the deliverable identification number, e.g. T1.1)

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

VCS Version Control System

WP Work Package

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 8 of 29

1 INTRODUCTION

1.1 DELIVERABLE OVERVIEW

This report will act as guidelines and a broad documentation of the FLUIDOS CI/CD platform
as well as the Development and Testing environment which will be created and configured in
the concept of Task 9 FLUIDOS platform Development Environment Setup.

As per the requirements of task 9.1 it is expected to:

● Guide the collaborative development and integration of FLUIDOS components.

● Setup a Continuous Integration/Continuous Development (CI/CD) environment to ensure
higher quality software.

● Integrate all software components developed in technical WPs and release the FLUIDOS
platform in two major releases.

● Test FLUIDOS at different levels (unit, system, integration, and end-to-end tests) and
monitor its progress toward its KPIs.

● Ensuring the quality of the produced integrated platform.

● Deliver an integrated solution ready for the experimental validation in WP7.

In this report and based on the above requirements, the FLUIDOS CI/CD platform is
presented and described. The infrastructure consists of a set of software components that
incorporate and align with the modern Agile methodology and DevOps procedures, able to
support all necessary development and testing activities.

1.2 DOCUMENT STRUCTURE

To incorporate the above information and guidelines the report is organised in the following
subsections/chapters:

● Chapter 1 provides an overview and structure of the document. Chapter 2 describes the
Agile Integration and overview of all Software tools of the project.

● Chapter 3 describes the FLUIDOS CI/CD, the tools selected for the software
development teams and established Continuous Integration/Continuous Deployment
workflows.

● Chapter 4 discusses Security practices for the Continuous Integration/Continuous
Delivery platform and Development & Testing Environment.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 9 of 29

1.3 DOCUMENT SCOPE

The results presented in this document are in adherence with the best practices,
methodologies and tools. Reliable and widely used by the developer community, open-
source tools are utilised, following the common set of DevOps methodologies, in order to
support holistically the development, testing, integration and deployment processes. Finally,
we ascertain to customise and deploy the corresponding open-source tools to fulfil the needs
and requirements that uniquely characterise the FLUIDOS’s dedicated environment.

1.4 GENERAL OBJECTIVES

FLUIDOS is a research-oriented project, whose results must be confirmed and benchmarked
with real-world integrated prototypes. From one side, FLUIDOS foresees the necessity to
define strict coding, testing and integration rules to guarantee the delivery of high-quality
artefacts (albeit still at a prototype level, TRL<= 5); on the other side, most of the personnel
involved in FLUIDOS are not full-time developers, hence tools with reasonable learning curve
should be privileged over highly powerful, but complex CI/CD platforms.

Consequently, the project will choose the required tools based on the following principles.

1. Keep small the number of tools. The more tools we use, the longer the learning curve,
and the hardest becomes to connect and correlate information present in one tool with
the one in another (e.g., code in GitLab, bug tracking in Kira, testing results in Jenkins).

2. Privilege well-known tools (or the one that, given the desired levels of features, offer a
more favourable learning curve) against more specialised solutions, perhaps more
appropriate for production-grade CI/CD pipelines.

3. Privilege managed services. Keeping the CI/CD infrastructure up-to-date, as well as
guaranteeing the proper security patches, run-time features, etc., is a time-consuming task
that has nothing to do with research. Therefore, whenever possible, FLUIDOS would select
services that are managed by third-parties, which can be simply consumed (i.e., used) by
the project researched and possibly by external contributors (depending on the cost).

4. Facilitate the testing of the software artefact within the several physical domains in which
FLUIDOS operates. We foresee FLUIDOS artefacts to be deployed on robots, on
embedded devices, on managed cloud providers. Ideally, the chosen testing solution
should be able to support them all.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 10 of 29

2 AGILE INTEGRATION

2.1 SPRINT MANAGEMENT AND AGILE SCRUM
CONCEPTS

FLUIDOS uses an agile methodology to drive the research and innovation activities, designed
to transform innovative ideas into profitable products according to real user/customer needs.
To achieve this goal, the methodology focuses on learning and discovering how to fit a
technology into the market instead of how to carry out the technological developments
themselves.

It is based on executing iterations on a Build-Measure-Learn (formalised in the Lean
methodology) feedback loop, which provides a scientific method for validating two aspects:
that the implemented technology is valid (i.e., the implementation is right); that it responds
to real needs (i.e., it is the right implementation). This drives the decision process by objective
data and it also pushes developments in the direction of what potential users and customers
perceive as valuable.

FIGURE 1: BUILD-MEASURE-LEARN

2.1.1 Organisation

Due to the nature of this project the most convenient organisation is component-based (one
component, one team). This organisation is aligned to the co-location of the teams, it will
simplify the communications, reducing the handoff of requirements, designs, and test data.

Each team will be able to aggregate the needs of multiple features into the architecture of
their component and can focus on building the best-possible component. The team will
manage its own backlog.

Following Agile there will be defined the following roles:

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 11 of 29

Product Owner:

● Define the overall strategy.

● Prioritises work from the product backlog list, aligned with the overall strategy.

● Defines goals, answering any questions.

● Oversees the evolution of the components.

● Understands the requirements.

● Evaluates the progress through each iteration.

In FLUIDOS the owner of each component will be its Product Owner.

Scrum Master:

● Ensures the team adheres to the Agile practises the team has agreed to follow.

● Gives support to the Product Owner

● Ensures that everyone on the team understands goals.

● Finds techniques for effective product backlog management.

● Helps the team to see the necessity for clear and concise product backlog items.

● Understanding product planning

● Ensuring the Product Owner knows how to organise the product backlog.

● Understanding and practising agility

● Facilitating events as requested or needed.

● Implements the Scrum approach with development teams.

The Product Owner of each component will assign a Scrum Master to the team.

Development and Tester Team:

Using the backlog items of the sprint the development team will:

● Define the tasks for the backlog items.

● Realise the tasks.

● Create and test the code.

An additional team will be needed, the Integration Team created from WP9. This team will:

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 12 of 29

● Set up a continuous integration environment and provide guidance to the component
owners for the continuous integration and testing of their components.

● Test all the features at the system level.

● Test non-functional and quality requirements. This includes performance and reliability
testing.

The Scrum Master of the Integration Team will be a Global Scrum Master, this role will
facilitate the coordination between components.

FIGURE 2: SCRUM TEAM

2.1.2 Sprints

The activities will be organised in sprints lasting 1 month that will allow results to be quickly
assessed and any appropriate adaptations made. At the end of each Sprint the achievements
will be presented during the Sprint Review. From these sprints we will get updates and
achievements, issues, and next steps.

For each FLUIDOS team at the beginning of each sprint:

● The product owner will set the priorities from the backlog.

● Identify the task list for the sprint.

● Elaborate the tasks schedule.

Biweekly reviews

Biweekly, the status and progress of components will be monitored reviewing the task list
status (completed tasks, new task identification) and the task progress.

To these reviews will assists:

● Scrum Master

● Development/Tester Team

Reports of these reviews will be sent to:

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 13 of 29

● Scrum Master

● Development/Tester Team

● Product Owner

2.1.3 Agile Tools

Agile Tools for fast communication

Fast communication tools will be used for each module or component, for example one Slack
channel for each module or for each component.

Agile Tools for work management

The greater the levels of transparency within the team, the easier it is for the Scrum Master to
monitor progress and minimise misunderstandings. If it looks like team members aren’t
communicating effectively or work is falling behind, the Scrum Master can step in and help
resolve any differences.

Recommended software tools for work management are Jira, Zenhub or Taiga

2.2 DOCUMENTATION OF THE POSSIBLE
SOFTWARE TOOLS

The possible software tools that could comprise The FLUIDOS platform are listed below,
namely:

● GitHub (GitHub Inc., n.d.) is an internet-hosting service for software development and
version control, a software tool that helps software teams manage changes to source
code. It offers distributed version control of Git as well as access control, bug tracking,
software feature requests, task management, continuous integration, and wikis for every
project (GitHub Inc., n.d.). Version control, also known as source control, is a practice
commonly used by developers’ teams in order to track and manage changes to software
code. As development environments have accelerated, version control systems help
software teams work in an agile manner which is especially useful for DevOps teams
(Atlassian, 2021). It can help to reduce development time and increase successful
deployments with less disruptions and errors.

● Gitlab (GitLab Inc.) GitLab is an open source code repository and collaborative software
development platform for large DevOps and DevSecOps projects. GitLab is free for
individuals. GitLab offers a location for online code storage and capabilities for issue
tracking and CI/CD. The repository enables hosting different development chains and

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 14 of 29

versions, and allows users to inspect previous code and roll back to it in the event of
unforeseen problems.

● Jenkins (Jenkins, n.d.) an open-source tool automation server that supports building,
deploying and automating of the project acting as the “brain” of the process. Jenkins has
been configured to respond to developer related actions and triggers and initiates
software build, testing and packaging as well as “pushing” images to a dedicated
registry.

● Travis (©Travis Ci, gmbh) Travis CI is a hosted continuous integration and deployment
system.

● Jira (Atlassian Corp.) is a software application used for issue tracking and project
management. The tool, developed by the Australian software company Atlassian, has
become widely used by agile development teams to track bugs, stories, epics, and other
tasks.

● Zenhub (Axiom Zen) is an agile project management and product roadmaps tool
designed to help software teams organise, plan, track, and manage their work. ZenHub is
available either inside GitHub via a browser extension or as a standalone web app.

● Taiga (Taiga Agile, LLC) Taiga is an open-source project management software for
multidisciplinary teams that work agile across both scrum and Kanban frameworks.

● RobotFramework (Robot Framework Foundation) Robot Framework is a generic open
source automation framework. It can be used for test automation and robotic process
automation (RPA). Robot Framework is supported by Robot Framework Foundation.
Many industry-leading companies use the tool in their software development. Robot
Framework is open and extensible. Robot Framework can be integrated with virtually any
other tool to create powerful and flexible automation solutions. Robot Framework is free
to use without licensing costs.

● SonarQube (SonarSource) is an open-source platform developed by SonarSource for
continuous inspection of code quality to perform automatic reviews with static analysis of
code to detect bugs and code smells on 29 programming languages. SonarQube offers
reports on duplicated code, coding standards, unit tests, code coverage, code
complexity, comments, bugs, and security recommendations. SonarQube can record
metrics history and provides evolution graphs. SonarQube provides fully automated
analysis and integration with Maven, Ant, Gradle, MSBuild and continuous integration
tools (Atlassian Bamboo, Jenkins, Hudson, etc.)

● JFrog Container Registry (JFrog, n.d.) a repository manager tool used to organise
resources, it will provide a private registry (Docker) in which The FLUIDOS project's
artefacts will be securely stored and distributed.

● Keycloak (Keycloak-Team, n.d.) an open-source Identity and Access Management tool
which is used to add authentication to applications and secure services. All other
components of the FLUIDOS CI/CD platform can use the Keycloak authentication to gain

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 15 of 29

access to their services. This way the users can authenticate with Keycloak rather than
individual applications in a centralised manner.

● SonarQube (SonarQube, n.d.) an open-source platform that provides automated,
continuous inspection of code quality detecting bugs as well as security vulnerabilities
and supports various programming languages.

● NGINX (NGINX, 2022b) an open-source web server designed as a reverse proxy. For the
FLUIDOS CI/CD services. A reverse proxy can retrieve resources from servers on behalf of
a client, thus protecting the FLUIDOS CI/CD platform services.

● Portainer (Portainer.io, n.d.) is an open-source management, UI tool for Docker hosts. It
allows for management of different Docker environments, offering the host’s
administrator various monitoring and management options for all the Docker resources
(containers, images, volumes, networking, etc.). It is a single container, which offers a
web interface running on any Docker engine, either standalone or in swarm mode.

● Slack is an instant messaging program designed by Slack Technologies and owned by
Salesforce. Although Slack was developed for professional and organisational
communications, it has been adopted as a community platform. Users can communicate
with voice calls, video calls, text messaging, media and files in private chats or as part of
communities called "workspaces". In the FLUIDOS platform can be used as a tool to
send alerts both in the execution of Jenkins jobs as well as alerts to monitor crashes in
any of the deployed pods.

● Jira (Atlassian Corp.) is a software application used for issue tracking and project
management. The tool, developed by the Australian software company Atlassian, has
become widely used by agile development teams to track bugs, stories, epics, and other
tasks.

● Zenhub (Axiom Zen) is an agile project management and product roadmaps tool
designed to help software teams organise, plan, track, and manage their work. ZenHub is
available either inside GitHub via a browser extension or as a standalone web app.

● Taiga (Taiga Agile, LLC) Taiga is an open-source project management software for
multidisciplinary teams that work agile across both scrum and Kanban frameworks.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 16 of 29

3 CONTINUOUS INTEGRATION

3.1 DEVOPS AND CI/CD PRACTICES

FLUIDOS needs CI/CD as it is the optimal practice in the development process regarding the
tools used and composing the FLUIDOS platform. Continuous integration (CI) as the term
suggests allows for frequent integration and versioning of code as well as continuous check-
ins and code verifications (Zhao et al., 2017). This will allow for smooth integrations of
components that will be successfully incorporated and most importantly verified and tested
ensuring this way that new and functional commits will be merged in an already error-free
environment/application. CI succeeds in minimising the release cycle and allows the
developers to discover and fix bugs early, therefore avoiding backtracking and code
validation while providing them with more development and integration time (Zhao et al.,
2017).

Continuous Delivery is strongly connected with CI acting as the next step to the CI/CD
pipeline. In this stage it is ensured that the application is ready for delivery to the end-users
providing “packaging” of the application. Moreover, during this stage tools that are
responsible for automated building and releasing of the application are ensured, keeping this
way the artefacts always ready for deployment at any given time. Continuous Delivery ensures
that the application can be released correctly and more frequently, regardless of code
changes which for that fact are kept small-scaled.

Ultimately, Continuous Deployment, the final stage of the CI/CD procedure, provides
automated launching and distribution of the applications (and its components). For every
change that has passed the previous stages and therefore is able to be incorporated to the
end-result, a new deliverable/output/version is released, while in case of a failed test through
the pipeline the change is prevented from deployment. This process is fully automated and
as such does not require any human intervention.

Overall, the stages as described above (CI, CD & Continuous Deployment) are the optimal
practices regarding Development & Operations. This process focuses heavily in establishing
improved and constant collaboration and communication between development and
operation teams thus achieving the required quality and business objectives. The discussed
processes and environment facilitate the automations of large components related to
development, testing and deployment.

The FLUIDOS developer teams will utilise these tools and procedures to commit changes,
build and test source code and project artefacts in the most efficient manner. The Continuous
Deployment stage in FLUIDOS will be executed in testing servers (Development & Testing
Environment). No production servers during the writing of this deliverable.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 17 of 29

3.2 OVERVIEW OF CONTINUOUS
INTEGRATION/CONTINUOUS DELIVERY
SELECTED SOFTWARE TOOLS AND
ENVIRONMENT

Interconnected software components make up the automated build system for FLUIDOS, and
mutually perform a series of operations to provide correct integration and validation of newly
introduced parts or elements by the developer teams. Changes made by developers on
individual tools of the FLUIDOS project, trigger the CI/CD platform, which subsequently
integrates them in the FLUIDOS platform.

The deployment of the individual software components that constitute the FLUIDOS
Continuous Integration/Continuous Deployment (CI/CD) platform will be deployed on the
cloud. All server’s network traffic (inbound & outbound) will be secured by the proper firewall
configuration.

3.3 CONTINUOUS INTEGRATION/CONTINUOUS
DELIVERY STACK AND METHODOLOGY

This chapter illustrates and further explains the FLUIDOS CI/CD platform, an environment that
incorporates various software components to integrate, test and finally deploy the complete
FLUIDOS platform. To facilitate development workflows, the major goal of this activity is to
set up, install, and configure a CI/CD infrastructure. To aid with the integration process, a set
of cooperative workflow tools is established. Each individual software component is further
presented in the following subsections. Furthermore, each specific module is accompanied
by guidelines regarding its deployment.

The CI/CD development process can be described as a methodology to frequently deliver
software by introducing automation into the stages of development.

3.4 CI/CD SCENARIOS AND SELECTED TOOLS

This section describes all the components and software tools selected in the above-
mentioned methodology. The environment is made up of numerous software elements that
work together to integrate, test, and eventually deploy the FLUIDOS platform. To illustrate
the task each component undertakes towards the end-result; the following subsections
provide additional information on each of the necessary software modules comprising the
FLUIDOS CI/CD platform.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 18 of 29

To satisfy the needs, two scenarios have been proposed, the first that will have to be installed
and managed, and the second, on the contrary, that will lack installation and maintenance
and can be used more immediately. This will allow us to have a more elaborated and robust
version of FLUIDOS against another faster and lightweight version.

For each scenario we will need four Core components:

1. Version Control System (VCS)

Version control, also known as source control, is the practice of tracking and managing
changes to software code. Version control systems (VCS) are software tools that help software
teams manage changes to source code over time. VCS keeps track of every modification to
the code in a special kind of database. It is a remote repository of files that comprise the
source code of a software application. If a mistake is made, developers can compare earlier
versions of the code to help fix the mistake while minimising disruption to all team members.

2. Continuous Integration/Continuous Delivery (CI/CD)

Continuous integration (CI) it’s a primary DevOps practice, it allows for automation of the
integration of code changes, from multiple contributors to a single software project.
Moreover, it allows developers to regularly commit code into a centralised repository where
builds and tests then run thus asserting the new code’s correctness before integration
(Atlasian, n.d.).

● Developers get copies (locally) of the source code and apply changes to their local
system.

● The changes then are committed to the centralised, common repository.

● The server is immediately notified upon any incoming change.

● The server initiates the below actions:

1. Pulls the latest code version which includes the newly added changes.

2. Builds the application and reports any potential problems.

3. Runs unit and integration tests, reporting any issues if they exist.

4. Releases any artefacts to be deployed for testing.

5. Assigns a build tag to the software version that was built.

Additionally, due to the above-described process developers benefit by getting aware of
issues in a short timeframe and can act on solving the issues after committing a change, this
process (CI) is available through the whole duration of the project’s lifecycle.

3. Test Logs and Report

A mechanism to display results of unit and integration tests performed after testing builds of
the software under development.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 19 of 29

4. Container Registry

A stateless, highly scalable central space for storing and distributing container images. They
provide secure image management and a fast way to pull and push images with the right
permissions.

3.4.1 Scenario 1 (Self Managed)

In this section, a chain of tools is proposed that will compose a scenario that is elaborated to
install and manage, but can provide more flexibility and functionality in the future. On the
other hand, we will need resources to carry out the installation of all the components that
make it up.

3.4.1.1 Tools Selected

● Version Control System: GitLab

GitLab will be used as the VCS within the FLUIDOS CI/CD platform. It is an easy yet powerful
and intuitive git VCS. Multiple developers can concurrently create, merge, and delete parts
of the code as they are working independently at their local system, before applying the
changes to the shared GitLab repository. GitLab offers a set of useful features to the software
development process, such as version control, issue tracking, code review, wiki, etc.

Like every other git VCS, GitLab comes with extended branching capabilities. In most cases,
there is one main branch in a repository from which each developer who works on a specific
feature or bug fix creates an additional, diverging branch. Once the developers have
concluded their changes on the source code, they subsequently merge their side branch back
into the main branch.

Gitlab can be used in two ways, one in which the service is already hosted by the Gitlab
company (SaaS, https://about.gitlab.com/) and the other in which a self-managed server
instance is installed. The second option will be chosen for this scenario to provide more
versatility and freedom.

● Continuous Integration: Jenkins

Jenkins uses pipelines to generate an ordered series of events/tasks/actions. These tasks
relate to the purpose of building, testing, packaging, deploying, and storing software.

As described previously, repositories under the FLUIDOS GIT will be connected to
corresponding Jenkins Pipeline jobs. Source code changes in GIT repositories, such as
commits, merges etc., will trigger the respective repository pipeline. The pipeline, in turn,
defines compilation, build and test stages.

A Jenkinsfile is a text file containing the definition (implementation and process) of a Jenkins
pipeline. The Jenkins Pipeline implements a basic three-stage continuous delivery and
consists of a precisely ordered number of steps regarding building, testing and delivering of

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 20 of 29

an application. The Jenkins server can pull the Jenkinsfile current version upon every new
build trigger. The FLUIDOS pipelines are defined using declarative syntax format.

● Logs and Report: RobotFramework

The combination of Jenkins with RobotFramework is immediate, since we can find in jenkins
a plugin that prepares the environment to work with RobotFramework (RobotFramework
Plugin), the objective is integrating the robot plugin in the testing stage. The main function is
to show the outputs of the test executions, a shell command has to be included in a step of
the pipeline of the execution script to execute a Robot test.

● Container Registry: Docker Hub (Own Registry)

In this scenario docker hub would be used but installing its own registry.

Here are some essential reasons why use own private registry instead of a public registry like
DockerHub(SaaS).

● Control where the images are stored - A private registry gives full control over the
storage location of the images and how can access them.

● Custom image pipeline
● More privacy for proprietary and private images
● Custom configuration options e.g. logging, authentification, load balancing, etc..

● Build environment: Kubernetes

Kubernetes will help control the deployment of the applications that are being developed to
build a functional scenario ready for make executions, unit testing, integration testing in which
any state of the application can be built.

FIGURE 3: SCENARIO 1 WORKFLOW

1. The developer commit code to the project code repository in GitLab

2. A webhook triggers(Commit trigger) the automation processes on Jenkins

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 21 of 29

3. Jenkins Master selects a Slave for execution

4. Auto-preparing the Scenario, purging old build and clone repository again

5. Build and package based on repository descriptor and upload to k8s for build and test
environment

6. The Scenario is prepared to make executions

7. Run tests and get the results

8. A robot create the log report of the tests results and publish them on Jenkins

9. An image is built and published on the Docker Hub repository

FIGURE 4: CI/CD TOOLS USED IN SCENARIO 1 FLUIDOS

https://about.gitlab.
com/

VCS

https://www.jenkins.
io/

CI/CD

https://robotframew
ork.org/

Logs Robotization

https://hub.docker.c
om/_/registry

Container Registry (Own
Registry)

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 22 of 29

https://kubernetes.i
o/

Test Environment

TABLE 1 : SCENARIO 1 CORE TOOLS

3.4.2 Scenario 2 (Lightweight Alternative)

In this section, a lightweight alternative is proposed, to save installation, administration and
maintenance costs and to have a plug and play scenario, which allows teams to focus their
efforts on software development. This scenario has some advantages over the previous one
but also some drawbacks such as the lack of privacy or flexibility.

FIGURE 5: SCENARIO 2 WORKFLOW

2. The developer commit code to the project code repository in Github

3. A webhook triggers(Commit trigger)

4. A Build is prepared in a Github Actions Runner

5. Unit testing is displayed directly in Github with GA Test Reporter

6. a) If the build works correctly, it will be published in Docker Hub Registry
b) If the build or testing fail, the artefact is not ready to publish

3.4.2.1 Tools selected

● Version Control System: Github

In this scenario, Github will be used as VCS. The fundamental difference with Gitlab from the
previous scenario is that it will not be necessary to do any type of installation and it will not
entail a waste of resources because the free functionality with public repositories will be used.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 23 of 29

● Continuous Integration: Github Actions

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform that
allows you to automate build, test, and deployment pipeline. You can create workflows that
build and test every pull request to your repository, or deploy merged pull requests to
production.

GitHub Actions goes beyond just DevOps and lets run workflows when other events happen
in a repository.

GitHub provides Linux, Windows, and macOS virtual machines to run workflows, or can be
self-hosted runners in a own data centre or cloud infrastructure.

About the pricing, Github has no restrictions for free Organisations that have public
repositories and brings 2000 free minutes of build time per month. If these limits are
exceeded, the idea is to consider hosting our own runners.

● Logs and Report: Test Reporter (Github Actions)

A Github Action that displays test results from testing frameworks directly in GitHub.

● Parses test results in XML or JSON format and creates nice report as Github Check
Run.

● Annotates code where it failed based on message and stack trace captured during
test execution.

● Provides final conclusion and counts of passed, failed and skipped tests as output
parameters.

● Container Registry: Docker Hub (Public Registry)

The standard registry for Docker and Kubernetes, Highly scalable central space for storing
and distributing container images. It provides secure image management and a fast way to
pull and push images with the right permissions and without administration overhead or
resource costs. The only problem with public registries is that we do not have full control over
their actions and that they can get expensive if you need multiple private images.

https://github.com

https://github.com/features/actions

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 24 of 29

https://github.com/marketplace/actions/te
st-reporter

https://hub.docker.com/_/registry

TABLE 2 : SCENARIO 2 CORE TOOLS

3.4.3 Optional Components

Additional components can be added to complete and improve the Scenarios.

● SonarQube (code Quality)

Reducing the risk of software development within a very short amount of time, by constantly
scanning code for potential bugs, bad coding practices, code redundancy, etc. is an important
component in a CI/CD environment. It detects bugs in the code automatically and alerts
developers to fix them before rolling it out for production. Early detection can reduce
potential defects in later phases.

SonarQube is an open-source platform offering static analysis, continuous inspection and
reviewing of code. It offers support for numerous programming languages as well as
integration with Jenkins pipelines. In FLUIDOS it could perform security and quality assurance
tests.

● Keycloak (identity, access management)

Keycloak is an open-source Identity and Access Management (IAM) tool having a licence with
an Apache License 2.0. It streamlines the authentication process for applications and IT
services. Keycloak offers a broad set of features, like SSO, authentication and authorization,
social login, multifactor authentication, and centralised user management. The purpose of
Keycloak is to ensure that the right people in an organisation have appropriate access to
resources. With Keycloak, one can secure services with a minimum of time and add
authentication to applications.

In FLUIDOS CI/CD Keycloak acts as the SSO point for most of the tools. By using Keycloak
there is no need to manage and create user accounts to each tool but centrally controlling
and issuing user groups and access details.

● Nginx (reverse proxy)

In FLUIDOS, the NGINX could be used as a reverse proxy in front of the FLUIDOS CI/CD
platform. A reverse proxy is a proxy server in a private network, which is located between the
firewall and the back-end servers. Its role lies in redirecting and forwards client requests (e.g.,

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 25 of 29

web browser) to the appropriate back-end destination in order to ensure the smooth flow of
network traffic between clients and servers (NGINX, 2022a).

● Portainer (monitoring)

In FLUIDOS, Portainer could be containerized and deployed on a cloud server and in its Home
screen, Portainer can list all the Docker hosts/servers of the environment. Moreover, an
overview of the status of each Docker host is displayed briefly on the dashboard. Monitoring
and management options are also offered on a per-container basis for each Docker host.

● Kubernetes (test environments)

Kubernetes could help control the deployment of the applications that are being developed
to build a functional scenario ready for make executions, unit testing, integration testing in
which any state of the application can be built.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 26 of 29

4 SECURITY PRACTICES FOR THE CONTINUOUS
INTEGRATION/CONTINUOUS DELIVERY PLATFORM
AND DEVELOPMENT & TESTING ENVIRONMENT

A set of security features has been considered and incorporated in the CI/CD solution to
protect both the CI/CD infrastructure and services and the deployed project’s artefacts. The
following paragraphs describe in detail these provided security assets.

Encryption - Secure communication over Hypertext Transfer Protocol Secure
(HTTPS)/Transport Layer Security (TLS)

Access to the offered services is secured with HTTPS to protect the connections of the users
to the deployed applications. Specifically, the continuous integration (Jenkins), the
management and the artefacts repository (JFrog Container Registry) have been secured with
HTTPS, allowing a secure experience from a client’s side. Data sent using HTTPS is secured
via Transport Layer Security protocol (TLS), which provides three key layers of protection:

● Encryption - encrypting the exchanged data to keep it secure from eavesdroppers. That
means that while users are using an HTTPS secured service, nobody can "listen" to their
conversations, track their activities across multiple pages, or steal their information.

● Data integrity - data cannot be modified or corrupted during transfer, intentionally or
otherwise, without being detected.

● Authentication - proves that users communicate and send data to the intended service. It
protects against man-in-the-middle (MitM) attacks and builds user trust.

The OpenSSL library that provides an open-source implementation of the TLS protocol has
been used to generate the private keys, certificate signing requests, SSL certificates (self-
signed or Certificate Authority (CA)-signed) and for certificate format conversion.

Additionally, the connection to the servers that will be used for the deployment of the
project’s artefacts, including the testing, staging and production environments, has been also
secured with HTTPS. Access to the Docker daemon socket is protected by enabling TLS,
allowing Docker to be reachable through the network in a safe manner. From the server side,
connections from clients authenticated by a certificate (self-signed or signed by a CA) are
allowed to the servers in which the project’s artefacts will be deployed. From the client side,
clients can only connect to these servers with a certificate that can again be self-signed or
signed by a CA.

Hard disk encryption at rest of the CI/CD infrastructure servers

All hard disks mounted to the servers (virtual machines) that are used for the deployment of
the FLUIDOS CI/CD solution are encrypted. Disk encryption at rest ensures that files are
always stored on disk in an encrypted form. The files only become available to the operating
system and applications in readable form while the system is running and unlocked by a

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 27 of 29

trusted user. An unauthorised person looking at the disk contents directly, will only find
garbled random-looking data instead of the actual files, securing the actual data stored in
cases that the hard disk or server is lost, stolen, or discarded after its end-of-life.

User authentication for the CI/CD services

The services offered in the FLUIDOS CI/CD solution, such as the continuous integration
(Jenkins) and the artefacts repository (Artifactory) are secured using user authentication. The
integration of an existing Lightweight Directory Access Protocol (LDAP) server or Active
Directory implementation is possible.

Firewall protection of the CI/CD and Development & Testing Environment infrastructure

The security of the infrastructure used by the CI/CD platform and Development & Testing
Environment is ensured by proper firewalling, controlling the allowed connections to the
servers used for the deployment of services and project’s artefacts. Specifically, one of the
most popular and flexible open-source Linux firewall software is used for this purpose,
iptables. A set of iptables rules has been defined and configured to the different servers to
block some of the common network attacks (SYN flood attacks, Smurf attacks, attacks, attacks
by malfunctioning ICMP packets and other forms of Denial of Service (DoS attacks)). The
default policy is to drop incoming, outgoing or forwarded packets from any source to any
destination, unless there is a specific rule set to allow a particular communication.

SSH key-based authentication to the infrastructure

SSH access to administer and manage the CI/CD platform servers has been configured to use
only key-based authentication. This is a more secure alternative in comparison to the most
commonly used password authentication. Although passwords are sent to the server in a
secure manner, they are sometimes not complex or long enough to be resistant to repeated,
persistent attackers. Modern processing power combined with automated scripts make brute
forcing a password-protected account very possible. Thus, SSH public key authentication in
which we generate and store a pair of cryptographic keys and then configure the servers to
recognize and accept the generated keys is a more secure approach.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 28 of 29

5 CONCLUSIONS

This deliverable has provided technical documentation for all the developments and activities
conducted in WP9 FLUIDOS Platform Development Environment Setup. The CI/CD
environment set up is presented here, together with the tools chosen to make up the CI/CD
stack of FLUIDOS. Moreover, the DevOps methodology and CI/CD practices that will be used
during the development and testing phases of the FLUIDOS components are described in
detail.

Regarding the Development and Testing environment, a production level CI/CD pipeline
could be developed able to integrate distributed deployment and multiple branches of the
FLUIDOS components. Moreover, the CI/CD workflow that the project's development team
will employ to deploy, test, and integrate software components is introduced.

As each FLUIDOS component has different needs, it falls upon their Product Owners to
choose the CI/CD scenario that accomplishes them and the most suitable tools to make it
possible.

FLUIDOS | D9.1: Development environment and CI/CD workflows (V 0.3)

© 2022-2025 FLUIDOS Page 29 of 29

REFERENCES

[1] Altameem, E. (2015). Impact of agile methodology on software development. Computer
and Information Science, 8(2). https://doi.org/10.5539/cis.v8n2p9

[2] Atlassian. (2021, April 6). What is version control: Atlassian Git Tutorial. Atlassian.
Retrieved September 15, 2022, from https://www.atlassian.com/git/tutorials/what-is-
version-control

[3] Atlassian. (n.d.). What is continuous integration. Atlassian. Retrieved September 8, 2022,
from https://www.atlassian.com/continuous-delivery/continuous-integration

[4] GitHub Inc. (n.d.). Where the world builds software. GitHub. Retrieved September 15,
2022, from https://github.com/

[5] Jenkins. (n.d.). Jenkins. Retrieved September 8, 2022, from https://www.jenkins.io/

[6] Leffingwell, D. (2011). Agile software requirements: Lean requirements practices for
teams, programs, and the enterprise, Add.-Wes.

[7] Let's Encrypt. (n.d.). Let's Encrypt. Retrieved September 20, 2022, from
https://letsencrypt.org/

[8] SonarQube. (n.d.). Code quality and code security. SonarQube. Retrieved September 8,
2022, from https://www.sonarqube.org/

[9] Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., & Vasilescu, B. (2017). The impact of
continuous integration on other software development practices: A large-scale empirical
study. 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). https://doi.org/10.1109/ase.2017.8115619

