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EXECUTIVE SUMMARY 

Decentralized computing offers significant benefits such as improved scalability, capacity utilization, 
fault tolerance, and privacy. Additionally, it can also bring about two energetic and environmental 
benefits: By its very decentralized nature, and as long as some of the loads can be shifted, the system 
can take advantage of lower carbon electricity, thus lowering the overall computing-related carbon 
emissions. Secondly, through a better utilization of available computing resources, it can minimize 
hardware production, which can save energy, materials, emissions, and costs.  

This FLUIDOS deliverable thus focuses on developing an energy- and carbon-aware computing model. 
This model aims to enhance energy efficiency and reduce greenhouse gas emissions via two key 
strategies: 1) shifting computing loads in geographical location and execution time to utilize low-
carbon electricity, and 2) reducing the need for new device production through an architecture that 
maximizes the use of existing devices, thereby being cost-efficient and minimizing the production 
footprint. To allow for the shifting in time discussed under point 1) above, both future computing loads 
and future carbon intensities of electricity need to be forecasted; the document addresses these 
predictions as well. 

The document also touches upon the methodologies for assessing the environmental impact of 
Information and Communication Technology (ICT). Two approaches are highlighted: the first focuses 
on the operational electricity consumption of ICT equipment, common in computing and electrical 
engineering studies. The second is the life-cycle assessment (LCA), widely used in environmental 
sciences, offering a more comprehensive view by including the embodied footprint of devices. LCA is 
particularly relevant in FLUIDOS for its holistic perspective on environmental impact assessment. 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 5 of 72 

 

TABLE OF CONTENTS 

1 Intro & Motivation 12 

2 T6.1: Carbon-aware computing (TUB) 14 

2.1 Existing methods and related work 15 

2.1.1 Workload classification 15 

2.1.2 Google’s Carbon-Aware Computing 16 

2.1.3 Microsoft’s Carbon-Aware Kubernetes 16 

2.1.4 Let’s Wait Awhile 17 

2.1.5 CarbonScaler 17 

2.1.6 CarbonExplorer 17 

2.1.7 GreenCourier 18 

2.1.8 Carbon-Aware Kubernetes Scheduler by Piontek et al. 18 

2.1.9 KEDA 19 

2.1.10 Karmada 19 

2.1.11 Quantifying the limits of spatiotemporal load shifting 19 

2.2 LCA within FLUIDOS 20 

2.2.1 Overview of Life Cycle Assessment basics 20 

2.2.2 Definition of a Function Unit 21 

2.2.3 Distributing the hardware production 21 

2.3 Data sources 23 

2.3.1 Carbon Intensity 23 

2.3.2 Energy measurement tools 24 

Intel RAPL 24 

ACPI interface 26 

IPMI interface 27 

KEPLER 27 

2.4 FLUIDOS carbon-aware scheduler 30 

2.4.1 Principles 30 

Spatial Scoring Principles 30 

Temporal Scoring Principles 31 

2.4.2 Architecture and prototyping 31 

Spatial scoring 33 

Temporal scoring 36 

Spatiotemporal scoring 41 

3 T6.2 Cost-effective infrastructure (IBM) 45 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 6 of 72 

 

3.1 Composable disaggregated infrastructure 46 

3.1.1 State of the art and overview 46 

3.1.2 Activities in FLUIDOS 47 

3.1.3 Applications of interest 49 

3.2 Infrastructure at the Edge (TOPIX) 51 

3.2.1 Introduction 51 

3.2.2 Scope 51 

3.2.3 Proposed solution 53 

3.2.4 Implementation 54 

3.3 IoT cost/power-effective infrastructure (STM) 56 

3.3.1 SCOPE 56 

3.3.2 SURVEY 57 

3.3.3 PROPOSED INFRASTRUCTURE SOLUTION 59 

4 T6.3: AI for performance prediction (FBK) 63 

4.1 Related work 63 

4.1.1 Workload prediction 63 

4.1.2 Energy prediction 64 

4.2 Forecasting model prototype 64 

4.2.1 Datasets used and specifications 65 

4.2.2 Model architecture 66 

5 Conclusions 69 

 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 7 of 72 

 

LIST OF FIGURES 

Figure 1. The Cost Manager (in the red dashed box) is a characteristic unit of WP6 as seen in overall 
FLUIDOS architecture. 14 

Figure 2. Overview of WP6 scope. 15 

Figure 3. Calculation of the Total Node Score. 31 

Figure 4. Flowchart of the spatial scoring algorithm. 32 

Figure 5. Pseudocode of the spatial scoring function. 33 

Figure 6. Calculation of the optimal sliding window. 35 

Figure 7. Flowchart temporal scoring algorithm. 36 

Figure 8. Pseudocode of the temporal scoring function. 37 

Figure 9. Flowchart spatiotemporal scoring algorithm. 40 

Figure 10. Pseudocode of the spatiotemporal scoring function. 41 

Figure 11. Sunfish framework architectural diagram. 45 

Figure 12. AI model inferencing system. 47 

Figure 13. IoT Edge granularity. 55 

Figure 14. The Far Edge vs the Cloud. 57 

Figure 15. Local processing with STM32 and possible ST sensors. 58 

Figure 16. Load prediction model workflow. Fehler! Textmarke nicht definiert. 

Figure 17. Layers of CNN used in the load prediction model. 64 

 

about:blank


 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 8 of 72 

 

 LIST OF TABLES 

Table 1. Pros and Cons of different Kubernetes Scheduler customization methods. 29 

Table 2. Selected AI models of interest. 48 

 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 9 of 72 

 

ABBREVIATIONS 

LCA  Life Cycle Assessment 

ICT  Information and Communication Technology 

WP  Work Package 

DC  Data Center 

AI  Artificial Intelligence 

ML  Machine Learning 

CI  Continuous Integration 

CD  Continuous Development 

FaaS  Function as a Service 

API  Application Programming Interface 

CPU  Central Processing Unit 

GPU  Graphics Processing Unit 

SLO  Service Layer Objective 

SLA  Service Layer Agreement 

VCC  Virtual Capacity Curve 

MOER  Marginal Operational Emission Rate 

IPCC  International Panel on Climate Change 

CRD  Custom Resource Definition 

LCI  Life Cycle Inventory 

LCIA  Life Cycle Impact Assessment 

FU  Functional Unit 

GWP  Global Warming Potential 

GHG  GreenHouse Gas 

CEMS  Continuous Emissions Monitoring System 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 10 of 72 

 

MEF  Marginal Emission Factors 

SDK  Software Development Kit 

RAPL  Running Average Power Limit 

SoC  System on a Chip 

DRAM  Dynamic Random Access Memory 

ACPI  Advanced Configuration and Power Interface 

PnP  Plug and Play 

APM  Advanced Power Management 

IPMI  Intelligent Platform Management Interface 

BIOS  Basic Input/Output System 

UEFI  Unified Extensible Firmware Interface 

OS  Operating System 

BMC  Baseboard Management Controller 

KEPLER  Kubernetes-based Efficient Power Level Exporter 

eBPF  extended Berkeley Packet Filter 

SSH  Secure Shell 

BM  Bare-Metal 

VM  Virtual Machine 

QoS  Quality of Service 

HTTP  HyperText Transfer Protocol 

IoT  Internet of Things 

I/O  Input/Output 

CAPEX  Capital Expense 

OPEX  Operational Expense 

PCIe  Peripheral Component Interconnect express 

CXL  Compute Express Link 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 11 of 72 

 

PV  Photovoltaics 

TLC  Telecommunications 

UPS  Uninterrupted Power Supply 

CO2  Carbon dioxide 

H2  Hydrogen 

CNN  Convolutional Neural Network 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 12 of 72 

 

1 INTRO & MOTIVATION 

Decentralized computing presents a range of advantages, including heightened scalability, better 
capacity utilization, enhanced fault tolerance, and bolstered privacy. Nonetheless, decentralized 
computing can also be associated with adverse environmental consequences due to either 
underutilized computing resources and thus wasted idle operational energy and embodied production 
energy, or due to the usage of high-carbon electricity when elsewhere idle resources could be 
employed with similar energy consumption but a reduced carbon footprint.  

To address these issues, the aim of work package 6 (WP6) is to develop an energy- and carbon-aware 
computing model as part of FLUIDOS. The innovative framework implemented in FLUIDOS is 
anticipated to drive energy efficiency and reductions in greenhouse gas emissions through two primary 
mechanisms: 

● The capability to shift loads in space and time to take advantage of low-carbon electricity, but 

also, 

● The avoidance of device production through an architecture that allows for a better utilization 

rate of available devices and is thus both cost-efficient and minimizes the production footprint 

embodied into devices. 

To achieve these goals, WP6 comprises three main tasks: 

1. A carbon-aware computing model capable of shifting loads in space and time to take 

advantage of low-carbon electricity (T6.1), 

2. A flexible and cost-effective architecture that allows the minimization of deployed devices, 

leading thus to the reduction of both environmental impact and costs (T6.2), and 

3. An AI model for performance prediction needed for the time shift of loads (T6.3). As temporal 

shifts can obviously only be performed into the future, it is imperative to estimate future 

computing needs and upcoming carbon intensities of electricity. 

To reduce the environmental impact of any product or system, it first needs to be accurately measured. 
Over the past approximately 20 years, two somewhat distinct approaches have emerged in the field 
of environmental assessment for Information and Communication Technology (ICT). Assessments 
found in computing and electrical engineering publications tend to center around the electricity 
consumed during the operation of ICT equipment. On the other hand, the well-established life-cycle 
assessment (LCA) methodology, commonly employed in environmental sciences, has also been applied 
to examine the environmental impact of ICT. While the former studies often benefit from access to 
high-quality primary data and the domain expertise of the authors, LCA offers a more comprehensive 
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and, therefore, a more semantically accurate modeling method. In particular, LCA allows to account 
for the embodied footprint of devices, which can in some cases dominate the overall impact of [1], [2]. 
LCA within FLUIDOS is introduced further below. 

https://www.zotero.org/google-docs/?G9ZJUG
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2 T6.1: CARBON-AWARE COMPUTING (TUB) 

This section presents the fundamental principles of the environmental optimization strategies 
employed within FLUIDOS, as well as the principles governing the environmental impact assessment 
that serves as a prerequisite. It is organized as follows: Section 2.1 presents the related work, i.e., 
existing methods of carbon-aware computing, discussing their individual benefits and drawbacks. 
Section 2.2 discusses how LCA principles will be applied to FLUIDOS, including challenges. Section 2.3 
presents the data sources used for estimating the carbon intensities of electricity. Finally, and building 
on all these considerations, Section 2.4 presents the principles and proposed architecture of the 
FLUIDOS carbon-aware scheduler. 

The Cost Manager in Figure 1 designates and aggregation and integration of WP6 results into the 
overall FLUIDOS architecture. Since it is determined to consume and advertise metrics related to local 
hardware and grid condition the closest cooperation partner for it is the Resource Acquisition 
Manager, defined in WP2.  

 

Figure 1. The Cost Manager (in the red dashed box) is a characteristic unit of WP6 as seen in overall FLUIDOS architecture. 

An overview of the task interactions among subtasks within the work package is given in Figure 2. 
Reduction of both operational and embodied carbon emissions are seen as two focus points of this 
work package. The details on how to achieve this reduction are given in boxes with dashed borders 
and are discussed in respective subchapters further in this report. 
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Figure 2. Overview of WP6 scope. 

2.1 EXISTING METHODS AND RELATED WORK 

To begin the breakdown of the individual studies it is crucial to elaborate on the classification of typical 
workloads (see Section 2.1.1). This gives a basis for the understanding of which type of workloads have 
the highest potential for carbon savings and therefore must be prioritized. Further, in sections 2.1.2-
2.1.10, most relevant studies on carbon-aware scheduling have been listed and their summary with 
possible implications of developing a carbon-aware scheduler have been presented. Finally, in Section 
2.1.11 an overarching assessment of the limits for carbon savings is given. 

2.1.1 Workload classification 

According to a classification provided in [3], workloads shiftable by duration can be further broken 
down into short-running (majority of jobs executed in DCs; e.g. FaaS or CI/CD), long-running (e.g. ML 
training, scientific simulations or big data analysis) and continuously running workloads (e.g. 
continuous services such as user-facing API or computationally intensive workloads like blockchain 
mining, protein folding, etc). Out of those three types, long-running workloads represent the highest 
potential for carbon savings because of their high energy-intensity and an observable horizon for their 
execution. Execution time of the workloads has proven to be the cornerstone for understanding the 
purpose of using demand forecasting for job scheduling, since scheduled workloads (e.g., batch jobs 
such as nightly tests/builds, periodic backups, etc), depending on their time constraint, be shifted in 
both directions in time. This is to contrast the so-called “Ad Hoc Workloads” (e.g., FaaS, CI/CD, ML 
training) the shifting potential of which is limited to the future solely. Lastly, the dichotomy of workload 
interruptibility is elaborated on. To this point, interruptible workloads (e.g., one big: ML training or 

https://www.zotero.org/google-docs/?whWqkc
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multiple small tasks: generation of monthly reports) are naturally preferred over non-interruptible 
workloads (e.g CI/CD jobs, database migration and backups), since the former can be broken down in 
a way that maximizes carbon savings.  

2.1.2 Google’s Carbon-Aware Computing 

Developed by Google [4] for its data centers across the globe, this concept envisions shifting 
computation loads in time and space to take advantage of low-carbon electricity. 

The core components are as follows: 

1. Fetching pipeline for next day’s carbon intensity forecast  
2. Power models pipeline for statistical model training which maps CPU usage to power 

consumption for various power domains characteristic of Google’s heterogeneous 
infrastructure landscape. 

3. Load forecasting pipeline responsible for generating the next day’s forecasts for workload 
demand (both flexible and inflexible) on the cluster level. An important characteristic of this 
pipeline is the evaluation of the forecasting error, which proves to be crucial for the following 
two components. 

4. Optimization pipeline co-optimizes the next day’s expected carbon footprint and power peaks. 
The latter are subject to infrastructure and application service level objective (SLO) constraints 
as well as contractual and resource capacity limits. 

5. SLO violation detection raises a flag when the daily flexible demand of a cluster is not met. This 
triggers the cluster being excluded from the shaping pool for a week for the load forecasts 
(component #3) to adapt to the rise in demand. 

The algorithm yields the so-called Virtual Capacity Curves (VCCs), which are further used to reshape 
the peaks of flexible load and shift them towards more favorable times of the day. As demonstrated in 
Fig. 3, the blue hatched areas represent delayed workloads of the daily flexible capacity that are shifted 
across the calendar days. Whereas orange hatching stands for the workloads that are being shifted 
within one calendar day. The VCCs yielded by the proposed multiobjective optimization algorithm are 
depicted in red and demonstrate peak shaving of the total load (flexible + inflexible) that happens 
typically around mid-day. Meanwhile, the execution of daily inflexible load (purple) is left intact and is 
a benchmark for a successful load-shifting strategy yielded by the algorithm on a given day. In addition 
to cutting down on carbon emissions the above-mentioned peak shaving facilitates a potential 
reduction of default cluster capacity for future installations. This, in turn, minimizes infrastructure 
costs and/or hardware wear. 

2.1.3 Microsoft’s Carbon-Aware Kubernetes 

With a similar purpose as Google, Microsoft [5] put forward the idea of expanding a vanilla Kubernetes 
scheduler with a weighting algorithm to optimize the node-selection process for the purposes of 
sustainability. Apart from the fundamental components of Kubernetes and functionality developed by 
[6] this concept from Microsoft incorporates carbon intensity data and a customizable weighting 

https://www.zotero.org/google-docs/?iNZnTx
https://www.zotero.org/google-docs/?7KICE8
https://www.zotero.org/google-docs/?8zGQkY
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algorithm. The most basic version of this algorithm deals with normalized “Marginal Operating 
Emission Rate” or MOER for each cluster node.  The idea is to take the MOER value of an individual 
node and divide it by the total MOER values across all nodes to get a normalized percentage weighting 
of each node. Optionally, a latency constraint, as well as predicted MOER values, can be built into the 
weighting algorithm for a more sophisticated decision process. 

2.1.4 Let’s Wait Awhile 

Some authors, such as [3], made open accessibility of their work a priority which rendered the use of 
commercially available data for grid carbon intensity from providers such as electricityMap and 
WattTime not possible. Thus, the data from a literature review by the International Panel on Climate 
Change (IPCC) [7] served as the basis for carbon intensity calculations in this study. The estimations 
encompass the complete life cycle of energy sources used and are based on median values for carbon 
intensity from the literature review. Even though marginal carbon intensity manages to capture the 
cause-effect relationship of load shifting better than its counterpart, this metric has been deemed 
impractical for demand management because of its high uncertainties. 

The findings from this study have shown benefits in carbon savings both for short-term (shifting to 
after sunrise in countries with abundant solar and shifting to later in the night in most countries) and 
longer-term shifting (to weekends for more than 20% savings). Two of these delay-tolerant workloads 
have been evaluated experimentally to investigate the sensitivity of parameters such as execution time 
constraints, scheduling strategies and the accuracy of carbon intensity forecast. The experiments have 
validated the analytical projections and proven that relaxing time constraints and exploiting the 
interruptibility of workloads yield in systematic carbon-efficiency gains. 

2.1.5 CarbonScaler 

In the paper by [8], CarbonScaler, a cloud-based autoscaler that optimizes compute-intensive 
workloads, such as ML training and scientific computations, for reducing carbon emissions is discussed. 
CarbonScaler focuses on accounting for energy consumption at the tenant level, utilizing CPU and GPU 
resources. It employs temporal shifting by delaying job execution during high carbon periods, and 
spatial shifting by selecting regions with lower carbon footprint for job execution. The paper 
demonstrates the efficacy of CarbonScaler in reducing carbon emissions for different workloads, 
configurations, and cloud regions. The authors plan to extend CarbonScaler to cluster-wide scheduling 
in the future, which presents challenges such as heterogeneity, resource pressure, priorities, and 
power management. 

2.1.6 CarbonExplorer 

The paper by [9] discusses the topic of renewable energy in data centers and how it can contribute to 
carbon reduction. Previous research has focused on on-site renewable energy generation using local 
solar power and microgrids, but the paper argues that hyperscale data centers can invest in renewable 
energy on the grid at a larger scale. The use of batteries for energy storage is also explored, as they 
can help mitigate intermittent renewable energy supply. The declining cost of lithium-ion batteries and 

https://www.zotero.org/google-docs/?qrmZAw
https://www.zotero.org/google-docs/?ibkluZ
https://www.zotero.org/google-docs/?AWvgVJ
https://www.zotero.org/google-docs/?A07GJH
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their potential impact on data center design and management are discussed. The paper also highlights 
the environmental and health risks associated with lithium extraction and battery disposal. Carbon-
aware scheduling is proposed to optimize job scheduling based on time-series analysis of renewable 
energy supplies and data center energy demands. The paper acknowledges that broader sustainability 
considerations such as electronic waste and water usage for cooling are beyond the scope of the study. 
Carbon Explorer, a design space exploration tool, is introduced to determine carbon-optimal 
investment strategies for renewable energy, energy storage, and computation shifting in data centers. 
The paper concludes by emphasizing the variability of carbon-optimal strategies based on geographic 
locations and the need for accurate data and transparent reporting in determining carbon footprint 
optimality. 

2.1.7 GreenCourier 

The thesis by [10] proposes GreenCourier, an intelligent scheduling approach for serverless computing, 
i.e. for executions of Function-as-a-Service (FaaS). Real-time data from external sources on carbon 
intensity are used to make scheduling decisions. The approach aims to minimize carbon emissions 
during function execution by selecting the most carbon-efficient location. The particularity of this study 
consists of the use of software infrastructure choice, namely, on top of Knative and Kubernetes, Liqo 
was used to establish a multi-cluster topology of Kubernetes clusters distributed in various 
geographical regions. Experimental results show that GreenCourier effectively reduces the carbon 
footprint by 8.7% and 17.8% per function execution compared to default and geo-aware schedulers. It 
also outperforms other schemes in correctly identifying ecologically viable regions and deploying pods. 

2.1.8 Carbon-Aware Kubernetes Scheduler by Piontek et al. 

The primary aim in this work [11] is to reschedule the non-critical tasks to minimize overall CO2 
emissions without violating the service level agreement (SLA) deadlines for each job. A constraint 
added is that if a shiftable job has waited for 24 hours, it must be executed immediately. The SLA for a 
job is established such that critical jobs, or non-critical jobs that have been pending for over 24 hours, 
must be run as soon as feasible. Otherwise, non-critical jobs can be delayed up to 24 hours. 

To minimize a cluster's total carbon emission, the overall load of the cluster should adapt to decrease 
power usage during periods of high CO2 intensity and increase during periods of low CO2 intensity. An 
optimization problem is formulated to minimize the CO2 emissions of a cluster during a specified time 
interval. The objectives include: 

● Ensuring each server's utilization stays below a predefined threshold. 
● Meeting the defined SLA for all service and batch jobs. 
● Ensuring that the sum of the utilization of all nodes during the time interval remains consistent 

with a default scheduler. 

 

2.1.9 KEDA 

https://www.zotero.org/google-docs/?HZooqt
https://www.zotero.org/google-docs/?g3HGJl
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One of the latest additions to the workload shifting field is the Carbon Aware KEDA (Kubernetes Event 
Driven Autoscaling [12]) Operator, which was announced by Microsoft in June of 2023 [13]. Judging 
from its configuration file, KEDA is enabling a carbon-aware scaling mechanism that adjusts the 
number of running replicas of a service (“maxReplicaCount”) based on carbon intensity data. If carbon 
intensity is low, it might allow more replicas, and if it's high, it might reduce them. However, there are 
conditions under which it may override the “eco mode” and run a specified number of replicas 
regardless of carbon intensity, especially during specific scheduled times.  

2.1.10 Karmada 

The system's design involves creating resource templates in the Karmada API server, which can be 
standard objects like configmaps or custom resources and Custom Resource Definitions (CRDs). These 
resources aren't scheduled as pods in the control plane cluster. Users specify a Propagation Policy, 
detailing which resources to pick and their placement. These clusters are selected by naming them in 
the cluster affinities [14]. 

The carbon-aware-karmada-operator, a prototype developed as a proof of concept, extends the 
Kubernetes API by introducing a CRD named CarbonAwareKarmadaPolicy. This CRD facilitates spatial 
shifting based on carbon intensity, detailing the member clusters and their locations. The operator 
ranks each member cluster by carbon intensity, selecting those with the lowest values, and reevaluates 
this ranking every five minutes with updated carbon data. The operator fetches carbon intensity data 
using the grid-intensity-go library from the Green Web Foundation. It supports various data providers, 
such as Electricity Maps and WattTime, and maintains an in-memory cache to reduce unnecessary API 
calls and associated energy use. A significant aspect of this operator is transparency; it updates the 
status of the custom resource, indicating selected clusters and current carbon intensity data. 
Furthermore, it emits Prometheus metrics for each cluster, denoting carbon intensity and activity 
status. 

2.1.11 Quantifying the limits of spatiotemporal load shifting 

One of the most recent studies [15] has attempted to quantify the upper limits of workload shifting. 
The primary finding states that the upper bound on carbon saving from such kind of spatiotemporal 
workload shifting is often largely limited by savings from simple policies, whereas sophisticated 
techniques provide diminishing returns. According to the authors, the potential for carbon savings 
coming from temporal shiftings is capped at 25%. Achieving this maximum value is challenging in real 
life, mostly due to the highest savings coming from scenarios, in which long jobs have high flexibility 
as well as no resource constraints and accurate knowledge of future grid carbon intensity is available. 
Fundamentally, regions with more renewables and higher carbon intensity amplitudes benefit from 
temporal shifting the most.  

Deferring the start time of a task results in diminishing carbon savings as the task's duration increases. 
Short tasks reap the most advantages. The more flexibility in the start time, the higher the potential 
savings. However, the average carbon reduction across all tasks and regions is under 12%, even with 

https://www.zotero.org/google-docs/?fRwndC
https://www.zotero.org/google-docs/?grUuSC
https://www.zotero.org/google-docs/?XU2Db8
https://www.zotero.org/google-docs/?sd6VTG
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significant flexibility. Some tasks in specific regions might achieve savings of up to 45%. Nevertheless, 
the overall effectiveness of adjusting start times will be minimal in most areas, except for very short 
tasks. 

Capacity constraints have been shown to diminish carbon savings by a large margin. This might explain 
higher reported savings in studies based primarily on simulations. In this study, the integration of 
capacity constraints has reduced the savings by more than 70%. 

For the case of spatial workload migration the study highlighted interactive requests and inference-
serving AI/ML systems to benefit the most, since those workloads typically do not have any data 
dependencies and therefore reduce networking overhead. In regions with diverse carbon intensity 
profiles savings can reach up to 60% at the expense of a slight increase in latency. 

It is worth mentioning that the dynamic of the current situation will likely change. With the increased 
adoption of renewables, carbon levels will vary more, making temporal shifting more beneficial. A 
greener grid will necessitate better spatial shifting strategies due to overlapping carbon intensities in 
different regions. 

2.2 LCA WITHIN FLUIDOS 

The unique selling proposition of the FLUIDOS carbon-aware scheduler is its accurate sustainability 
model that is to be enriched with “cradle-to-grave” assessment of the material and energy flows to 
and from the system both in the manufacturing and its operational phase. To adapt the generic LCA 
methodology to the FLUIDOS context, the following subsections explore the landscape of LCA in the 
context of distributed computing systems and lay the foundation to the development of a holistic 
approach to account for environmental impacts. 

2.2.1 Overview of Life Cycle Assessment basics 

Life Cycle Assessment (LCA) is the internationally accepted and standardized approach to determine 
the environmental impact of products and organizations as fact-based as possible. The LCA method 
deals with both the emissions and resources along all five life stages of a product, which are: raw 
material extraction, raw material manufacturing, product manufacturing, use stage and end of life. 
According to ISO 14044 [16], there are four phases of the LCA. First, the goal and scope of the given 
LCA study along with the product system, system boundary, functional unit (FU), reference flow and 
motivation are to be defined. In the next phase, data is to be collected and assigned to input/output 
flows. This phase is also known as Life Cycle Inventory (LCI). To bring the various indicators to a 
common denominator, resource consumption and emissions are to be characterized to environmental 
impact categories. After this phase, also called Life Cycle Impact Assessment (LCIA), an evaluation of 
the results and a sensitivity analysis are typically carried out. Among different available LCIA methods, 
ReCiPe [17] is the most commonly applied in a European context and provides both midpoint and 

https://www.zotero.org/google-docs/?EkYjH7
https://www.zotero.org/google-docs/?CbJXWZ
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endpoint results, where endpoint results are an aggregation of the midpoint ones for the purpose of 
easier interpretation and comparison amongst different studies. 

In the context of FLUIDOS, the LCA perspective complements the focus on the energy consumption 
during operation by an inclusion of the environmental burden of the provision of the hardware 
infrastructure. Avoidance of device production through a better utilization rate of available devices is 
a promising optimization mechanism, less explored in comparison to carbon intensity of operational 
electricity, that contributes to the full picture of the environmental footprint per unit of computation 
in carbon-aware computing systems. 

2.2.2 Definition of a Function Unit 

As given in [9] the FU is the quantified utility of a product system for use as a comparison unit and is 
to be used as a normalization for computation tasks. The FU should relate rather to the function a 
product fulfills rather than the physical product itself. This means, for example, “seating support for 
one person working at a computer for one year” rather than “one computer workstation chair”. As 
initially addressed by [18], a “typical product” in the field of ICT is dynamic and, therefore, contrasts 
with the classical understanding of functionality. For instance, despite a dramatic reduction of energy 
needed per transistor, the total energy requirement of the ICT sector did not follow this pattern, 
primarily due to ever-increasing demand for more powerful chips that contain many more transistors. 

The reference flow is based on this concept and is defined as the quantity of resources, products and 
emissions needed to fulfill the function of the chosen FU. These respective quantities per FU are, 
however, a particular challenge to calculate for services relevant for FLUIDOS, since the percentage of 
the allocated resource/product/emission per task is unknown due to the uncertainty of the hardware 
lifespan. 

2.2.3 Distributing the hardware production 

In the field of IT and of carbon-aware computing due to a particularly limited amount of manufacturer 
data a partial LCA is the most viable option. Here, the focus is placed mostly on the allocation for the 
production and the use phase. Given the heterogeneity of edge devices a sensible aggregation strategy 
needs to be developed to initiate an LCA study. This is because the emissions from their production 
vary strongly depending on the given device and its production facility [28].  

When deciding on the most energy-efficient and least Global Warming Potential (GWP) - intensive time 
and place for computation, FLUIDOS considers per unit workload: 

1. Current energy consumption of available devices. 
2. Environmental performance of energy sources (measured by GWP). 
3. Energy consumption during the production phase. 
4. GWP of the production phase. 

https://www.zotero.org/google-docs/?GjbV13
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FLUIDOS's primary environmental objective is carbon-aware load distribution. The aim is to distribute 
computing loads in a manner that minimizes GHG, given that all other conditions are met. Challenges 
arise when accounting for the production phase of devices: 

● The unpredictability of ICT devices' lifespan could lead to a biased preference for older devices. 
● Consequently, newer devices could be underutilized, hindering efficiency. 

To mitigate this, production phase flows should be divided by a device's expected computational tasks, 
requiring assessments of expected computation cycles per device and knowledge of device 
characteristics and lifespans. 

Lifespan and Use Phase Distinctions: 

● Devices like smartphones and tablets have shorter lifespans (few years) compared to data 
centers, which last over a decade [19], [20]. 

● Lifespans can vary between brands, especially in consumer electronics [21]. This requires 
custom resource and emission allocation per device. 

GWP Distribution across Device Lifecycle: 

● GWP distribution varies among devices. For instance, tablets and laptops have a major GWP 
share in the production phase. In contrast, servers and data storage units have a smaller 
relative share (per unit workload) of production phase GWP [22], [23]. 

ICT Sector Evolution: 

● ICT sector advancements have led to increased energy efficiency, especially for servers and 
data storage units, as evidenced by Koomey's Law [16]. 

● About 80-95% of GWP for these devices arises from energy consumption during use [22]. 
Hence, replacing existing functional hardware might be more GWP-efficient than continued 
usage.  However, if the operational energy demand is provided by renewable energy as the 
most straightforward optimization measure, the production of the hardware becomes the 
hotspot of the whole service. 

 

2.3 DATA SOURCES 

The scheduling algorithm demands a significant amount of variables to be fed in as time series and 
therefore acquisition of reliable data sources is one of the major goals in the first stage of algorithm 
development. The two major data sources, namely for quantifying the “greenness” of the grid and 
energy consumption of the hardware are presented in the following two subchapters. 

2.3.1 Carbon Intensity 

https://www.zotero.org/google-docs/?cVmhlr
https://www.zotero.org/google-docs/?AbeUPv
https://www.zotero.org/google-docs/?EdHbUi
https://www.zotero.org/google-docs/?27yNSs
https://www.zotero.org/google-docs/?C5gi6d
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According to [24], operational energy and carbon performance represent the most promising paths to 
low-carbon data centers, even from an embodied (hardware manufacturing) emission perspective. 
Therefore, in striving to reduce the carbon footprint of computations particular attention is to be 
placed on the quality of operational electricity, namely at its carbon intensity. It refers to how many 
grams of carbon dioxide (CO2) are released to produce a kilowatt hour (kWh) of electricity [25]. 

Fundamentally, two types of grid carbon intensities are used for carbon-aware scheduling: average 
and marginal [26]. Average grid carbon intensity is a viable option for scheduling purposes; however, 
it fails to capture the causalities in the electricity grid. Marginal carbon intensity data on the other 
hand reflects the increased carbon intensity after scheduling new jobs in case a new power plant with 
typically higher environmental burden must go online. 

There are multiple sources for gathering this data, some of which are open source, while others belong 
to commercial institutions. The most prominent examples of the latter are WattTime [27] and 
electricityMap [28], both of which provide not only the current estimation but also a day-ahead 
forecast of marginal grid carbon intensities for various locations across the globe. WattTime uses 
empirical modeling techniques to analyze marginal emissions caused by electricity generation in real-
time [29]. They use Continuous Emissions Monitoring System (CEMS) data to study how power plants 
respond to changes in electricity demand. WattTime places focus on data-driven causal models rather 
than assumption-driven models and they have extended the techniques in the published literature to 
leverage real-time power grid data and additional datasets on renewable energy curtailment. 

A number of grid operators [30]–[32] have open-sourced their data, however, load shifting across 
several of those regions proves to be challenging due to the heterogeneity of the metrics used. 

One of the most detailed models producing reliable carbon intensity data, namely on marginal 
emission factors (MEFs) has been developed for Germany by [33]. All available data including both 
generation and transmission has been aggregated for a predefined number of nodes. This, in turn, 
enables a dynamic assessment of the load shifting strategies among those nodes, since taking into 
consideration the heterogeneity of carbon intensity data for different nodes within one country has a 
high potential of providing additional carbon savings. The model is in the process of being expanded 
to EU-countries and its data proves to be of high value for load shifting across the continent. 

A recent addition to the carbon intensity tracking solution is the Kubernetes Carbon Intensity Exporter 
by Microsoft [34]. An advantage of this solution is its integration with the Carbon Aware SDK [35], as 
it runs in the same pod and allows the exporter to integrate any carbon intensity data source available 
through itself. Working together with Azure, the SDK maps the region that it is running to a geolocation 
to pass it to the WattTime API. The next step for the exporter is to fetch the carbon intensity forecast 
for the next 24 hours every 12 hours and save the data to a configmap on the cluster to be later passed 
to the KEDA operator. The configmap design has the advantage of a custom exporter with a different 
source of carbon intensity data being developed [36].  

2.3.2 Energy measurement tools 

https://www.zotero.org/google-docs/?P3NJK7
https://www.zotero.org/google-docs/?1zxwRW
https://www.zotero.org/google-docs/?aSaNOo
https://www.zotero.org/google-docs/?rnD8ET
https://www.zotero.org/google-docs/?iLUXXC
https://www.zotero.org/google-docs/?WmrGOL
https://www.zotero.org/google-docs/?TsCg53
https://www.zotero.org/google-docs/?MgzSbo
https://www.zotero.org/google-docs/?nR9Qns
https://www.zotero.org/google-docs/?1QhKWK
https://www.zotero.org/google-docs/?ODyfgb
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The following sections will analyze the available tools to collect power consumption metrics from 
Linux-based systems. 

Intel RAPL 

RAPL (Running Average Power Limit) is a reporting interface for cumulative energy usage of multiple 
system-on-chip (SoC) power domains. The RAPL energy reporting capability has been present on Intel 
SoC devices for several generations, and energy reporting is industry standard practice. This energy 
information is used by Intel processors for internal SoC management functions, such as controlling SoC 
power limits in conjunction with Intel Turbo Boost Technology. 

At runtime, certain privileged software may execute platform power and temperature management. 
Energy information from RAPL may be used by such applications to adjust system performance or track 
power use. Energy data is occasionally utilized in server systems to perform rack-level power 
management and efficiency loading across units. 

Platforms in RAPL are separated into domains for fine-grained reporting and control. A RAPL domain 
is a physically significant power management domain. The exact RAPL domains offered in a platform 
differ depending on the product category. RAPL implements four power domains: 

1)     Package Domain: This power domain represents the power consumption of the CPU's complete 
package, including cores and additional components (i.e., integrated graphic card). 

2)     DRAM Domain [37]: This power domain accounts for the power consumption of the DRAM. It 
is only accessible on servers. 

3)     PP0/Core Domain (PowerPlane 0): is used to monitor the power of the CPU cores only. 

4)     PP1/Graphic Domain (PowerPlane 1): is used to monitor the power of the CPU's graphic 
component alone. Because of this, it is only available for non-server architectures. Graphic 
components are not included in Intel server designs. 

NOTE: The reported power consumption at the Package domain is: PPKG=PP0+ PP1. 

Each RAPL domain supports: 

● ENERGY_STATUS for power monitoring. 

● POWER_LIMIT and TIME_WINDOW for controlling power. 

● PERF_STATUS for monitoring the performance impact of the power limit. 

● RAPL_INFO for information on measurement units, the minimum and maximum power 
supported by the domain. 

https://www.zotero.org/google-docs/?UCTrlt
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In addition, RAPL has 32-bit performance counters for each power domain to monitor energy use and 
overall throttled time. 

 ACPI interface 

The Advanced Configuration and Power Interface (ACPI) specification is an open standard that was 
created by a group of hardware and software companies including HP, Intel, Microsoft, Phoenix and 
Toshiba. It defines standard interfaces that allow operating systems to configure motherboard devices 
and control power. ACPI may be used for specific hardware components as well as the full system. 
Furthermore, it monitors the state of the system and utilizes power management techniques by 
altering the CPU running frequency and putting unnecessary components to sleep. 

ACPI is intended to allow the operating system to control each hardware component. Prior to the 
development of ACPI, power management was handled via Plug and Play (PnP) and Advanced Power 
Management (APM) subsystems, which were implemented in hardware and hence were less versatile 
in terms of management capabilities. ACPI, on the other hand, is implemented in the operating system 
(OS) layer and thus gives greater freedom for component management, as well as being hardware 
independent (if the hardware meets the ACPI standard). 

The ACPI allows the operating system to push certain hardware devices to a low power consumption 
state when they are not in use. Similarly, if the operating system determines that the applications do 
not demand a huge number of resources, ACPI can move the entire environment to a low power 
consumption mode. 

The ACPI specification details different device states to represent the execution of the system. 
Specifically, they can be classified into: 

● G states, representing the system's global execution state (e.g., working, sleeping, …). 
● D states, representing the device-dependent states (e.g., fully ON, …). 
● C states, representing the CPU power states. They detail the different CPU execution states 

(e.g., operating state, halt, sleep, …). 
● P states, representing the operating frequency of the CPU cores (e.g., maximum frequency, 

frequency scaled, …). 

Using ACPI it is thus possible to interact with the different states of the device and collect relevant 
metrics on the device execution. Furthermore, it is possible to modify the various states according to 
energy-aware management algorithms. 

 IPMI interface 

IPMI is a collection of computer interface requirements for a self-contained computer subsystem that 
offers administration and monitoring capabilities independently of the host system's CPU, firmware 
(BIOS or UEFI), and operating system. IPMI is a set of interfaces used by system administrators for out-
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of-band administration and monitoring of computer systems. For example, IPMI allows the 
administration of a machine that is switched off or otherwise unresponsive to connect to the hardware 
over a network rather than an operating system or login shell. 

The use of a standardized interface and protocol allows IPMI-based systems management software to 
control many different servers. IPMI, as a message-based, hardware-level interface specification, 
functions independently of the operating system (OS) to enable administrators to remotely control a 
system in the absence of an operating system or system management software. As a result, IPMI 
functionalities can be used in one of three scenarios: 

● Before an OS has booted (allowing, for example, the remote monitoring or changing of BIOS 
settings). 

● When the system is powered down. 
● After OS or system failure – the key characteristic of IPMI compared with in-band system 

management is that it enables remote login to the operating system using Secure Shell (SSH). 

IPMI messaging may be used by system administrators to monitor platform status (such as system 
temperatures, voltages, fans, power supplies, and chassis intrusion). 

The intelligence in the IPMI architecture is provided by the baseboard management controller (BMC). 
It is a customized microcontroller that is integrated into the motherboard of a computer, most 
commonly a server. The BMC is in charge of overseeing the interaction between system management 
software and platform hardware. BMC has its own firmware and RAM. 

Temperature, cooling fan speeds, power status, OS status, and other characteristics are reported to 
the BMC by various sensors embedded into the computer system. The BMC monitors the sensors and 
can transmit network warnings to a system administrator if any of the metrics exceed pre-set 
thresholds, signaling a potential system failure. 

KEPLER 

Kepler (Kubernetes-based Efficient Power Level Exporter) [38] is a Kubernetes-based solution for 
energy and power consumption monitoring on a cluster of servers. It uses eBPF to probe CPU 
performance counters and Linux kernel tracepoints and collect the exact CPU consumption of the 
different processes running on the system. Kepler then correlates such information with the power 
consumption metrics of the device to compute the contribution of the different processes to the 
overall power consumption of the device. 

Specifically, power consumption metrics are collected using the tools detailed in the previous section 
(INTEL RAPL, ACPI, IPMI) if available. If not available or incomplete, Kepler relies on a pre-trained neural 
network to generate an estimate of the power consumption, the Kepler Model Server. The main 
feature of the Kepler Model Server is to return a power estimation model corresponding to the request 
containing target granularity (node in total, node per each processor component, pod in total, pod per 

https://www.zotero.org/google-docs/?c2ZbEf
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each processor component), available input metrics, and model filters such as accuracy. In addition, 
the online trainer can be deployed as a sidecar container to the server (main container) to execute 
training pipelines and update the model on the fly when power metrics are available. 

The default Kepler installation consists of a pod, the Kepler Exporter, deployed on each node of the 
Kubernetes cluster. The pod is then in charge of collecting all the metrics previously mentioned and 
interacting with the model server to get estimates if the actual metrics are not available. 

Metrics can then be collected and stored using Prometheus and the OpenTelemetry standard for data 
visualization and post-processing. Examples of exported metrics are: 

● kepler_container_core_joules_total (Counter) This measures the total energy consumption 
on CPU cores that a certain container has used. 

● kepler_container_gpu_joules_total (Counter) This measures the total energy consumption on 
the GPUs that a certain container has used. 

● kepler_node_core_joules_total (Counter) Similar to container metrics, it represents the 
aggregation of all containers running on the node and operating system (i.e., 
“system_process”). 

● kepler_node_gpu_joules_total (Counter) Similar to container metrics, it represents the 
aggregation of all containers running on the node and operating system (i.e., 
“system_process”). 

Depending on the environment, Kepler's power consumption metrics collection varies [39]. It can be 
deployed in both BM and VM settings. 

Bare-Metal (BM) Environment: 

● Direct collection of real-time system power metrics is possible. 
● Power metrics comprise both dynamic (related to resource utilization) and idle power 

(constant irrespective of system load). 
● The Ratio Power model divides dynamic power across all processes. For example, if a program 

uses 10% of the CPU, it takes up 10% of the total CPU power. 
● Idle power estimation adheres to the GreenHouse Gas (GHG) protocol guideline, splitting it 

among processes/containers based on their size. 
● Different resource utilizations in Kepler are gauged differently, e.g., CPU instructions for CPU 

utilization and cache misses for memory utilization. 

Virtual machine (VM) Environment: 

● Direct power measurement for a VM isn't possible in public clouds. 
● Kepler's proposed solution involves initially deploying it in the bare-metal node, where it 

measures real-time power metrics. This data is then exposed to the VM, either through 
"hypervisor Hypercalls" or specific files that the VM can access, like the cGroup file. 

https://www.zotero.org/google-docs/?dh65QD
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● Another instance of Kepler within the VM then employs the Ratio Power Model to evaluate 
power usage by processes in the VM. 

● In absence of the passthrough approach, Kepler estimates VM's dynamic power consumption 
using trained power models. 

● Limitation: VMs, especially in public clouds, can't split idle power since one can't discern how 
many other VMs are operating on the host. 

 

2.4 FLUIDOS CARBON-AWARE SCHEDULER 

Having discussed the state of the art and generic approaches to carbon-aware scheduling, the 
foundations for the definition of the FLUIDOS carbon-aware scheduler has been laid. In the first 
subsection the principles of the scheduling logic are described on a high level, whereas in the following 
subchapter the actual prototyping challenges of the designed algorithm are shown, culminating in 
pseudocode demonstration of the proposed algorithm. 

2.4.1 Principles 

Spatial Scoring Principles 

1. Ease of Implementation: Spatial scoring is relatively straightforward to implement, primarily 
requiring live data on carbon intensity. 

2. Data Retrieval and Processing: It involves obtaining data from the Kubernetes API server about pods 
and nodes, either through direct HTTP calls or client libraries. 

3. Geographical Data Utilization: The geographic region of each node is identified and used in the 
scoring process. 

4. Carbon Intensity Integration: Current carbon intensity data is incorporated, obtained either directly 
from providers or via a Metrics Server aggregating various sources. 

5. Node Scoring and Selection: Nodes are scored based on key-value pairs, normalized, and the node 
with the highest score is selected for the pod deployment. 

6. Database Interaction: The chosen node's information is updated in the podSpec field and 
communicated to the K8s cluster's ETCD database via the API server. 

  

Temporal Scoring Principles 

1. Complexity and Sophistication: This approach is more complex than spatial scoring, requiring a 
nuanced understanding of workload characteristics and timings. 
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2. Pod Characterization: Each pod is characterized by a tuple, including its name, shiftability, and CPU 
utilization. 

3. Time Interval Definitions: Two different time intervals are defined - one for the overall inspection 
period and the other for a selected subset within it. 

4. Predictive Analysis: The algorithm searches for the most appropriate time frame for each pod based 
on predicted carbon intensity and workload. 

5. Forecast Sensitivity and Threshold Setting: The algorithm must balance forecasts of carbon intensity 
and workload, setting threshold values to avoid scheduling conflicts and ensure system resilience. 

6. Dynamic Workload Limitation: Workload limits are dynamically set based on hardware and service 
level agreements (SLAs), with contingencies for critical tasks and peak utilizations. 

7. Capacity and Stability Trade-off: A portion of CPU capacity is reserved to improve system stability 
and Quality of Service (QoS), albeit at the cost of reduced cluster capacity for workload shifting. 

8. Conditional Scheduling Logic: The scheduling decision is made through a multi-level conditional 
structure, prioritizing critical tasks, considering waiting times, and evaluating current CPU utilization 
and optimal carbon intensity windows. 

2.4.2 Architecture and prototyping 

Choosing the best custom scheduler development method largely hinges on the specific needs and 
constraints of the project. Writing a custom scheduler provides the highest level of control but also 
brings along the most complexity (see Table 1). The Scheduler Extender and Scheduler Framework 
Plugins are middle-ground options, allowing for customization while still leveraging the existing ”kube-
scheduler” base. Lastly, existing solutions offer the advantage of community-backed tools but may not 
entirely fit unique use-cases. 

Table 1. Pros and Cons of different Kubernetes Scheduler customization methods. 

Method Pros Cons 

Own custom scheduler 

1. Complete control 
over scheduling 

logic. 
2. Flexibility to design 

for specific use 
cases. 

3. Can coexist with 
the default 
scheduler. 

1. High complexity. 
2. Needs to handle 

updates and 
compatibility 

issues with newer 
Kubernetes 
versions.  

Scheduler extender 1. Leverages existing 1. Potentially 
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features of the 
vanilla scheduler. 

2. Sophisticated 
enough for most 
scheduling goals. 

increased latency 
due to extra HTTP 

calls. 
2. Maintenance with 

Kubernetes 
updates may be 

required. 

Scheduler Framework 
Plugins 

1. Easy to manage 
due to its 

modularity. 
2. Overrides or 

extends only the 
specified phases 

of scheduling. 

1. Requires 
knowledge on 
specific plugin 

points. 
2. Maintenance is still 

not fully automatic. 

A scheduler extender is a service that can help to make scheduling decisions. It is an HTTP server that 
the main scheduler communicates with via HTTP APIs. The extender can filter nodes and prioritize 
them, and the main scheduler combines these results with its results. This approach allows you to add 
custom scheduling behavior without changing the main scheduler:  

● Ease of Prototyping 
● Language Agnostic: You can write extenders in any language, not limited to the language the 

main scheduler is written in (Go).  
● Loose Coupling: It interacts with the main scheduler over HTTP APIs, allowing it to be a 

standalone service, which promotes separation of concerns and easy maintainability. 

During the process of assigning a pod, the extender facilitates the involvement of an external entity to 
both sieve and rank nodes. Two distinct HTTP/HTTPS requests are dispatched to the extender, 
individually representing "filter" and "prioritize" functions. If scheduling the pod isn't feasible, the 
scheduler intends to displace pods with inferior priority from nodes, directing them to the extender's 
"preempt" function, provided it's set up. The extender has the ability to provide a narrowed down 
selection of nodes along with fresh victims to the scheduler. Furthermore, by executing the "bind" 
procedure, the extender has the discretion to link the pod to the apiserver [40]. 

Spatial scoring 

Arguably, the implementation of spatial scoring is the easiest way of load shifting since live data on 
carbon intensity typically suffices for the scheduler to take a definitive action. However, spatial scoring 
unlike temporal scoring discussed further below requires an analysis of embodied emissions of node 
hardware to get a full picture of the carbon footprint of the executed jobs in the form of the “Total 
Node Score” or TNS (see Figure 3). To calculate TNS embodied emissions of the node hardware and 
the operational emissions from executing the specific job are added up to get a value of kgCO2e per 
hour of execution at nominal load of the node. In future iterations, the algorithm should be refined to 
include the characterization of pods based on their anticipated runtime. 

https://www.zotero.org/google-docs/?uVD2Qn
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Figure 3. Calculation of the Total Node Score. 

 
Similar to [6] and [10] the spatial scoring logic for the FLUIDOS carbon-aware scheduler extender will 
define a function that takes in the pod object along with a list of available node objects from the 
Kubernetes API server. This can be done either by spelling out HTTP calls manually, such as “GET 
/api/v1/namespaces/{namespace}/pods/{name}” for details on a specific pod or “GET /api/v1/nodes'' 
to get the list of nodes, or by using client libraries which exist for programming languages like Go [41] 
and Python [42]. The algorithm flowchart and its pseudocode are provided in Figure 4 and Figure 5 
respectively. 

https://www.zotero.org/google-docs/?zvd1bX
https://www.zotero.org/google-docs/?gFIhrH
https://www.zotero.org/google-docs/?ALaCYP
https://www.zotero.org/google-docs/?Exw5gs
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Figure 4. Flowchart of the spatial scoring algorithm. 
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Figure 5. Pseudocode of the spatial scoring function. 
 

1. Function Definition: 
○ function Spatial_Scoring(pod, nodes, emb_emi_data, thresh_tns): This line defines 

the Spatial_Scoring function. It takes four parameters: pod (representing a pod 
object), nodes (a list of node objects), emb_emis_data (data about embedded 
emissions) and thresh_tns (a threshold for the Total Node Score). 

2. Iterating Over Nodes: 
○ for each node in nodes: The function iterates over each node in the provided list of 

nodes. 
3. Extracting and Calculating Scores: 

○ region = node.get_annotation('region'): Retrieves the region information from the 
current node. 

○ operational_score = retrieve_operational_data(region) * pod.power_consumption: 
Calculates the operational score for the node based on data retrieved for the region 
and the power consumption of the pod. 

○ emb_emis_score = calculate_emb_emis_score(node, emb_emis_data): Calculates 
the embedded emissions score for the node based on the provided embodied 
emissions data. 

○ tns = operational_score + emb_emis_score: Summarizes the total node score (TNS) 
by adding the operational and embedded emissions scores. 

4. Updating and Storing Scores: 
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○ update_and_store_total_node_score(region, tns): Updates and stores the total 
node score for each region. 

○ normalize_total_node_scores(): Normalizes the total node scores. 
5. Evaluating Scores Against Threshold: 

○ if all(tns > thresh_tns for tns in nodes' tns_list):: Checks if all TNS values are below 
the provided threshold threshTNS. 

■ If true, return 'spatial_not_possible': Indicates that spatial scoring is not 
possible (i.e., no node meets the required criteria). 

6. Selecting Optimal Node: 
○ If not all TNS values are below the threshold: 

■ optimal_node = get_node_with_best_score(): Finds the node with the 
highest score. 

■ assign_pod_to_node(pod, optimal_node): Assigns the pod to this optimal 
node. 

7. Returning the Pod: 
○ return pod: Returns the pod object, now assigned to the optimal node. 

Temporal scoring 

Scoring procedure for temporal workload shifting requires a more sophisticated approach. The 
algorithm flowchart and its pseudocode are provided in Figure 7 and Figure 8 respectively. Here, both 
workload and carbon intensity forecasts play a crucial role, while embodied emissions are not relevant 
anymore since the workload stays on the given node under all circumstances. 

An important task which has been encapsulated in its own function is the calculation of the so-called 
“optimal sliding window” (see Figure 6). This is derived by comparing a subset of hours to be devoted 
for task execution within a specified time horizon (dictated by the available forecast data) by their 
average carbon intensity and workload amounts. Here, higher resolutions are potentially capable of 
yielding higher carbon savings but are more sensitive to forecasting errors. 

 

Figure 6. Calculation of the optimal sliding window. 
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Given the double uncertainty arising from the combination of carbon intensity and workload forecast 
a priority needs to be set, in case the carbon intensity forecast gives green light to the scheduler, but 
the load forecast implies that the total load will be critically high. To avoid this clash, a threshold value 
for carbon intensity (potentially dynamically, based on local grid conditions) needs to be selected. This 
value would allow a bigger pool of nodes to be available for scheduling, in case the node with the most 
beneficial carbon intensity conditions is awaiting an overflow. Another key variable in the temporal 
scoring algorithm is the workload limit, which is set dynamically for every hour by the workload 
prediction pipeline. At this point two factors are critical for system resilience, the general threshold 
(upper_threshold) for CPU overflow and in cases of peak utilization an additional amount of CPU power 
is reserved for system-critical tasks (prediction_threshold). The values to be picked are dependent on 
the hardware and SLAs. To give an example, if 10% of the CPU is assumed to be blocked, the maximum 
possible utilization is 90% and in case non-critical tasks populate this designated capacity additional 
10% of the maximum CPU utilization will be blocked for critical tasks. These measures reduce the 
capacity of the cluster for workload shifting by 20% in total but are expected to significantly improve 
the overall stability and therefore the quality of service (QoS). Additionally, for most servers from the 
energy efficiency perspective it is not attractive to exceed 80% utilization [43], which provides another 
reason for artificially limiting maximum available capacity on a given machine. 

https://www.zotero.org/google-docs/?2uvuoj
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Figure 7. Flowchart temporal scoring algorithm. 
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Figure 8. Pseudocode of the temporal scoring function. 
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1. Temporal_Scoring Function: 
○ The Temporal_Scoring function takes in parameters: immediate workload, carbon 

intensity, and workload prediction data. Its purpose is to determine the best time to 
schedule a pod, taking into account the current and predicted state of the system 
and environmental factors. 

2. Initialization of Pod List: 
○ A list of pod characteristics (pod list) is initialized, containing information like pod 

name, priority, and resources. 
3. Iterating Over Pods: 

○ The algorithm iterates over each pod in the pod list to determine the optimal 
scheduling time. 

4. Priority and Age Checks: 
○ For each pod, if its priority class is 'critical' or if the pod's age exceeds a maximum 

threshold (indicating it has been waiting too long), the pod is scheduled immediately. 
5. Finding the Optimal Window: 

○ If the pod is not critical or old, the algorithm proceeds to find the optimal scheduling 
window using the find_optimal_window function described below. 

6. Scheduling Decision Based on Window: 
○ If an optimal window is found and the pod's CPU limit is within the calculated 

workload limit for that window, the pod is scheduled. 
○ If no suitable window is found or the CPU limit exceeds the workload limit, the pod is 

returned to the queue to be considered later. 
7. find_optimal_window Function: 

○ This helper function is called by Temporal_Scoring and is responsible for selecting 
the optimal window from available time frames, based on carbon intensity and 
workload predictions. 

8. Filtering and Sorting Time Frames: 
○ The function first filters out time frames where the CO2 intensity is higher than the 

acceptable threshold. 
○ The remaining frames are then sorted based on their predicted workload, prioritizing 

those with the lowest workload. 
9. Selecting the Optimal Frame: 

○ If the sorted list of time frames is not empty, the first frame (with the lowest 
workload) is considered optimal. 

○ The index of this optimal frame in the context of the original list of time frames is 
identified and stored in optimal_index. 

10. Return Optimal Index: 
○ The find_optimal_window function concludes by returning the index of the optimal 

frame. If no frame meets the criteria, it returns -1. 
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Spatiotemporal scoring 

The spatiotemporal algorithm, in its present iteration, functions as a proxy to schedule pods using 
either spatial or temporal scoring methods, supplemented by two conditional clauses. Spatial scoring 
is prioritized because it avoids the complexities of double forecasting uncertainty. This algorithm 
represents an initial exploration of how to integrate both spatial and temporal shifting. Even in its 
current form, it represents a novelty, as the literature does not simultaneously explore spatial and 
temporal shifting.        

In its next iteration, we plan on expanding this algorithm to no longer favor spatial over temporal 
shifting, but to look into all nodes that come into question for a (current or future) optimal window. 
The current algorithm flowchart and its pseudocode are provided in Figure 9 and Figure 10 
respectively. 
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Figure 9. Flowchart spatiotemporal scoring algorithm. 

 
 



 

FLUIDOS | D6.1: Cost-effective and Energy-aware infrastructure (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 41 of 72 

 

 

Figure 10. Pseudocode of the spatiotemporal scoring function. 

1. Function Definition: 
● function Spatiotemp_Scoring(...): The function Spatiotemp_Scoring is defined with 

several parameters: pod (the pod object to be scheduled), thresh_migr_memory 
(threshold for the pod's persistent volume to decide between temporal and spatial 
scoring), nodes (list of node objects for possible pod placement), emb_emis_data 
(data on embedded emissions for spatial scoring), thresh_tns (threshold for total 
node scoring), iw, ci, and pwd (parameters for temporal scoring). 

2. Persistent Volume Check: 
● if get_persistent_volume(pod) > thresh_migr_memory: The function first checks if 

the persistent volume size of the pod exceeds the migration memory threshold. If it 
does, this suggests that migrating the pod may be too resource-intensive, and 
temporal scoring is preferred. 

3. Temporal Scoring Call: 
● return Temporal_Scoring(...): If the persistent volume is larger than the threshold, 

the function proceeds to call Temporal_Scoring with the immediate workload, 
carbon intensity, and workload prediction data, and then returns its result. 

4. Spatial Scoring Attempt: 
● else: If the persistent volume is not larger than the threshold, the function attempts 

spatial scoring. 
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● spatial_result = Spatial_Scoring(...): The function calls Spatial_Scoring with the pod, 
list of nodes, embedded emissions data, and the TNS threshold to attempt to find a 
suitable node for the pod based on spatial factors. 

5. Spatial Result Check: 
● if spatial_result == 'spatial_not_possible': After attempting spatial scoring, the 

function checks if the result indicates that spatial placement is not possible. 
6. Fallback to Temporal Scoring: 

● return Temporal_Scoring(...): If spatial scoring is not possible, the function falls back 
to temporal scoring, calling the Temporal_Scoring function again with the necessary 
parameters and returning its result. 

7. Successful Spatial Scoring: 
● else: If the spatial scoring is successful (i.e., it doesn't return 'spatial_not_possible'), 
● return spatial_result: The function returns the result of the spatial scoring, which 

presumably contains the selected node for the pod placement or some indication 
that spatial placement was successful. 
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3 T6.2 COST-EFFECTIVE INFRASTRUCTURE (IBM) 

Computing infrastructure represents an important investment that businesses and research 
institutions make to support the execution of their workloads of interest. However, the advent of cloud 
resources and the adoption of the cloud model down to edge devices moves the burden away from 
final users and towards the infrastructure providers. On the contrary IoT deployments remain mostly 
directly linked with the final applications and therefore a responsibility of the user. Regardless of the 
ownership, cost-effectiveness and efficient usage of computational resources remains a matter of 
utmost importance. 

Cost-effectiveness can be represented in various ways: increased energy efficiency (ops/W), reduced 
hardware acquisition, increased utilization of existing hardware and use of cheaper sources of energy. 
However, in the context of FLUIDOS, no single approach can be applied to all layers of the continuum, 
mostly because of the unique features and requirements that need to be considered at each level. In 
FLUIDOS we are exploring cost-effectiveness at three different layers of the continuum: data center, 
edge infrastructure and IoT devices. These three separated explorations aim at increasing the cost-
effectiveness at a different level, but their combined utilization will provide an even stronger benefit 
to the overall continuum. 

At the data-center level, IBM is exploring the novel concept of Composable Disaggregated Systems. 
Multiple cloud providers have publicly claimed their infrastructure is not fully utilized, with resource 
usage peaking at around 60% for CPU and memory [44]. At the same time, highly parallel accelerators 
are widely used in a range of applications (e.g., scientific computing and machine learning). These 
accelerators are often highly expensive devices in the order of tens of thousands of euros per device 
and are also specialized for specific types of computation. Equipping an entire datacenter with the 
right mix of accelerators is therefore a daunting task. A disaggregated infrastructure instead breaks 
the boundaries of the single server and connects devices in pools over a high-speed interconnect 
fabric. Servers can be dynamically composed out of pooled resources, enabling higher resource 
utilization and the composition of resources tailored to incoming workloads. 

At the Edge infrastructure level, TOPIX is considering cost-effectiveness of the networking 
infrastructure. Computing efficiency can’t be achieved without considering network efficiency, so telco 
operators still play an important role in this process. A cost-effective network infrastructure requires 
efficient devices, possibly powered by renewable energy sources, and a network topology which keeps 
traffic as local as possible, avoiding sending bits to large-scale data centers if not needed. This paradigm 
becomes pivotal when considering remote regions, where geography and orography raise traditional 
infrastructure costs thus decreasing efficiency (e.g mountain valleys): these are the scenarios where 
edge solutions based on solar energy, hydrogen and natural cooling may represent a key factor in 
achieving high-performance and cost-effective IT services, thus empowering local facilities and 
reducing digital divide.  

https://www.zotero.org/google-docs/?JouDRW
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STM is considering the introduction of a cost/power effective IoT edge computing infrastructure. The 
IoT Edge computing infrastructure compared to the traditional centralized Cloud approaches, will 
implement distributed computations across a variety of heterogeneous tiny IoT devices connected to 
several sensors, cameras, etc. In order to implement a cost-effective solution, IoT edge infrastructure 
brings computing capability closer to data sources. In addition, the paradigm introduces hierarchical 
layers of computing infrastructure enabling to move/share computation and services toward the far 
edge. Using this proposed approach the IoT infrastructure will reduce the global power footprint while 
lowering the implementation cost. 

3.1 COMPOSABLE DISAGGREGATED INFRASTRUCTURE 

3.1.1 State of the art and overview 

The advantages offered by composability have been explored over the past decade both in software-
based solutions as well as at a lower hardware level [45][46]. The level of support for composability 
however has varied, mostly concentrating on providing flexibility for connecting I/O subsystems (the 
lower-hanging fruit) all the way to sharing memory (the most difficult target). Solutions have varied 
from the composability of resources in external shared enclosures through sharing of resources in the 
participating servers themselves all the way to an all-or-nothing approach, where participating systems 
share everything. 

One of the key advantages of a composable systems architecture is the ability to reduce stranded 
resources and improve the utilization of resources overall.  Stranded resources occur within a server 
when the ratio of deployed resources does not match the ratio allocated.  For example, if customers 
are primarily requesting larger memory instances, then the deployed nodes will have the memory fully 
allocated while the CPUs remain underutilized.   

To make things worse, actual utilization often is substantially lower than the initial resource allocation 
because users must provision for peak utilization and/or overestimate their resource consumption to 
avoid crashes due to process eviction. On average, CPU, and memory utilization in a published Google 
cluster usage dataset [44] never exceeds 60% and 50% respectively, even though more than 100% of 
the CPUs (over committed) and 80% of the memory are allocated. A random sampling of servers in 
different data centers shows an average CPU and memory utilization of 17.76% and 77.93%, 
respectively [47]. In a more recent paper based on data from Alibaba [48], the authors note – in line 
with the earlier findings – that their average resource utilization is only 38% for CPU and 88% for 
memory.  While utilization can be improved with advancements in workload schedulers, the fixed 
server configurations at the heart of current data center architectures will still limit the overall 
resource utilization possible. Unallocated resources present both a CAPEX (capital expense) and OPEX 
(operating expense, e.g, space and power), which do not generate income for the data center operator 
when they are mostly idle.  

Today, the most advanced approach to hardware composability employs PCIe switching – the industry 
pacesetter was Dolphin which introduced external PCIe (Gen1) switches all the way back in 2006. 

https://www.zotero.org/google-docs/?40Yd7g
https://www.zotero.org/google-docs/?GeYXrR
https://www.zotero.org/google-docs/?iqmroO
https://www.zotero.org/google-docs/?VH2Q6n
https://www.zotero.org/google-docs/?plVKn0
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Complete solutions are offered by Liqid [49] and GigaIO [50], followed by more specialized solutions 
from Dolphin [51] and H3 Platform [52]. Composability of memory has been to date mostly an 
academic exercise with some relevant prototypes from industrial partners [53]–[58]. However, the 
advent of the Compute Express Link (CXL) standard [59], supported starting from PCIe gen 5, will enable 
load/store memory semantics on a PCIe fabric and support combined I/O and memory composition, 
leading the way towards full composable systems. 

3.1.2 Activities in FLUIDOS 

In the context of FLUIDOS, IBM is working on performing a cost-effectiveness analysis of a composable 
GPU-based system, where GPUs can be dynamically attached to hosts depending on workload needs. 
For a proper evaluation of cost-effectiveness to be carried out, we have identified two important 
milestones that have to be reached first: 1) the availability of real composable hardware that can be 
used for performing realistic performance comparisons on the selected applications, and 2) a software 
framework that enables automating the composition of resources and therefore the testing activities.  

IBM will be using pre-owned composable hardware from third party vendors such as Liqid [49] and 
GigaIO [50] to perform all the experiments required for this task. This infrastructure enables the 
dynamic composition of PCIe (gen4) devices and in the context of the FLUIDOS exploration, it will be 
used to compose GPUs. Future results will be reported as necessary in the upcoming deliverables. 
However, no access to the infrastructure will be possible to any partner in the FLUIDOS consortium. 
On the software side, IBM is co-chairing an effort of the OpenFabrics alliance called Sunfish [60], aimed 
at defining an open and universal framework for the management of disaggregated composable 
infrastructure (see Figure 11). 

 

Figure 11. Sunfish framework architectural diagram. 

https://www.zotero.org/google-docs/?1tBaPX
https://www.zotero.org/google-docs/?oIBZXK
https://www.zotero.org/google-docs/?YKbHNI
https://www.zotero.org/google-docs/?5OT5Fn
https://www.zotero.org/google-docs/?DfJZ0O
https://www.zotero.org/google-docs/?Iwurds
https://www.zotero.org/google-docs/?wZSXT9
https://www.zotero.org/google-docs/?FGooU0
https://www.zotero.org/google-docs/?yTUm7K
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Sunfish adopts the DMTF Redfish specification [61] as the standard schema for its APIs. Redfish is a 
well adopted object schema used in the management of hardware and complex systems. The main 
idea behind Sunfish is that of being hardware vendor agnostic. Users, also known as clients (see Fig. 
15), interact with Sunfish using a fully Redfish compliant RESTful API schema. On the hardware side, 
Sunfish hardware agents convert vendor specific APIs to Redfish and connect to the Sunfish core 
components. Client requests are processed and forwarded to the relevant hardware via the said 
agents. Clients rely on the same API regardless of the hardware connected to their system.  

A composition layer is defined and used for hosting resources control and composition policies. This 
allows clients to specify systems via a set of requirements (e.g., CPU model, GPU model and amount 
of memory) and constraints (e.g., memory latency lower than a specific value). The composition 
policies are in charge of processing the client’s requirement and identifying the right hardware that 
fulfills the client’s request. The Sunfish framework is an open-source project hosted in the OpenFabrics 
Management Framework GitHub Organization1.  

The integration of Sunfish with Kubernetes will enable extensive automated testing of cloud-based 
applications on composable infrastructure, and therefore the collection of the data necessary for 
performing a cost-effectiveness study based on composable GPUs. IBM is leading the development 
effort of the Sunfish framework and is working on finalizing the required support for enabling the 
FLUIDOS exploration activities. 

3.1.3 Applications of interest 

Artificial Intelligence is undoubtedly the most important class of workloads, against which all cloud and 
infrastructure providers are (at the time of writing) trying to optimize their infrastructure for, with the 
goal of increasing the competitiveness of the services they offer. 

AI applications are usually divided into two families: 1) training and fine-tuning of models; 2) model 
inference service. Training and fine-tuning refer to the set of steps that are performed for “building” a 
model (represented by a set of so-called weights) using large input datasets used for learning a specific 
task. This activity, especially with the latest Large Language Models (LLM), requires a specially built 
infrastructure with thousands of GPUs and fast networks. When training an LLM, one single task can 
also occupy an entire cluster and use 4000+ GPUs in unison. Inferencing instead, is a much lighter task 
with only a few GPUs (1 to 4) required for serving a model. Inference is the class of applications that 
we have selected for this activity. 

 

 
1  https://github.com/OFMFWG 

https://www.zotero.org/google-docs/?tjTFzV
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Figure 12. AI model inferencing system. 

In a cloud-based inferencing system (see Figure 12), users deploy their models for inference through a 
models management framework such as Caikit [62]. Model weights are downloaded either from 
private repositories or open ones such as HuggingFace [63], and deployed on Kubernetes compute 
nodes ready for serving inference requests. Usually an inference server, such as the Text Generation 
Inference server 2, exposes a RESTful interface through which users can send inference requests. 

The characteristics to be considered when deploying models in such a system are the number and 
model of GPUs required for each model, the amount of memory and CPU cores the inference server 
requires for performing requests queuing, batching, etc. In general, it is possible to serve multiple 
models from the same worker node depending on the model requirements and available resources. In 
a production environment the mix of different models, relying on different GPU models and numbers, 
and different amounts of CPU resources create fragmentation and lead to jailed resources and 
inefficient utilization of the infrastructure. The goal of this exploration is that of using a composable 
infrastructure for matching the resources required by each model maximizing the utilization of 
hardware resources, and therefore making the system more cost-effective. Exploratory results will be 
provided in the next release of this deliverable. 

Table 2 summarizes a set of AI models of interest from the IBM Watsonx [64] platform that will be 
considered for the evaluation. All the models listed are openly available on HuggingFace. 

 

 
2 Text Generation Inference Server: https://github.com/IBM/text-generation-inference 

https://www.zotero.org/google-docs/?9nfU5A
https://www.zotero.org/google-docs/?WLsftq
https://www.zotero.org/google-docs/?ZEPyks
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Table 2. Selected AI models of interest. 

Model name Tasks 

google/flan-t5-xxl 

  

message classification, 
questions answering, text 

summarization 

google/flan-ul2 

  

message classification, 
questions answering, text 

summarization 

EleutherAI/gpt-neox-20b 

  

message classification, text 
generation, text 
summarization 

bigcode/starcoder code generation 

 

  

3.2 INFRASTRUCTURE AT THE EDGE (TOPIX) 

3.2.1 Introduction 

In the scope of defining an energy- and carbon-aware computation model for FLUIDOS that can shift 
loads both in time and geography, a cost-effective infrastructure is needed as a key resource to enable 
this behavior. 

Creating affordable infrastructure is currently a fundamental challenge for IT managers. Achieving 
computing efficiency necessitates attention to network efficiency, making the role of 
telecommunications operators crucial. An economical network setup demands the use of effective 
devices that ideally utilize renewable energy and a network design that minimizes long-distance data 
transmission, keeping traffic localized and bypassing large data centers when unnecessary. This 
approach is especially critical in remote areas where the terrain and topography, such as in 
mountainous regions, can inflate the cost of conventional infrastructure and reduce its efficiency. In 
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such contexts, edge computing solutions that leverage solar power, hydrogen fuel, and natural cooling 
techniques become essential. They are key to delivering high-performance and cost-efficient IT 
services, enhancing local resources, and narrowing the digital divide. 

3.2.2 Scope 

The escalating global demand for clean and sustainable energy sources has triggered a profound 
exploration of alternatives. Renewable energy has garnered significant attention for its potential to 
combat climate change and reduce our dependence on fossil fuels. Among the array of renewable 
options, hydrogen has emerged as an exceptionally versatile and promising solution with applications 
spanning multiple sectors. One sector poised to benefit from hydrogen integration is the realm of Edge 
data centers. These facilities serve as critical hubs for data processing and storage, often in remote or 
off-grid locations. 

Telecommunications networks, a cornerstone of our modern connected world, depend on these Edge 
Data Centers for seamless connectivity, especially in areas where traditional power infrastructure is 
scarce. Yet, ensuring a continuous and reliable power supply to these facilities presents a formidable 
challenge. In this context, this document delves into the application of hydrogen in renewable energy 
scenarios specifically tailored to the needs of Edge Data Centers. The primary objective is to showcase 
the substantial potential of hydrogen in addressing the energy supply challenges faced by Data Centers 
and promoting sustainable, efficient telecommunication infrastructure. 

The document's core purpose is to provide a brief analysis of hydrogen's role in renewable energy 
applications within the context of Edge Data Centers. It examines three pivotal aspects of hydrogen 
utilization: production, storage, and application. Through a thorough exploration of these dimensions, 
the document seeks to illustrate how hydrogen-based systems can offer a dependable and resilient 
power supply to Edge Data Centers, even in the most remote or off-grid locations. Furthermore, it 
elucidates the advantages and challenges associated with hydrogen as an energy source, offering 
valuable insights into its prospects within the dynamic and ever-evolving landscape of Edge Data 
Centers. 

Technical survey 

Having an energy-efficient network and IT infrastructure at the edge, which involves decentralized 
computing and data processing closer to end-users or devices, presents a set of unique challenges and 
considerations. Edge computing, while advantageous for reduced latency and improved performance, 
comes with the following challenges related to energy efficiency: 

● Limited Resources: Edge locations, such as remote industrial sites or cell towers, may have 
limited access to resources like electricity and cooling infrastructure. This can make it 
challenging to design and operate energy-efficient IT systems. 

● Harsh Environmental Conditions: Edge locations are often exposed to harsh environmental 
conditions, including extreme temperatures, humidity, and dust. These conditions can impact 
the efficiency and reliability of IT equipment. 
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● Energy Sources: Access to clean and reliable energy sources, especially renewable energy, may 
be limited in certain edge locations. Relying on conventional grid power, which may be fossil-
fuel-based, can hinder energy efficiency efforts. 

● Cooling and Heat Management: Managing the temperature and cooling of IT equipment in 
challenging environments is a significant concern. Traditional cooling methods can be energy-
intensive, affecting overall efficiency. 

● Scalability: Edge facilities need to be scalable to accommodate increasing workloads and data 
processing demands. Ensuring scalability while maintaining energy efficiency is a complex task. 

● Maintenance and Remote Management: Edge locations are often remote and may not have 
on-site IT staff. This makes the management, maintenance, and monitoring of IT infrastructure 
more challenging, potentially affecting efficiency. 

● Connectivity and Latency: Low-latency connectivity is a fundamental requirement for edge 
computing, which can sometimes conflict with the goal of energy efficiency. Ensuring both 
low-latency and energy-efficient operations can be a balancing act. 

● Security and Compliance: Edge data centers and IT systems may need to comply with security 
and regulatory requirements, which can add complexity and affect the choice of energy-
efficient solutions. 

● Integration with Centralized Infrastructure: Edge IT infrastructure needs to seamlessly 
integrate with centralized data centers and cloud services. Ensuring compatibility while 
maintaining efficiency is crucial. 

● Resource Optimization: Making the most of available resources, such as optimizing workloads, 
data transfer protocols, and content delivery, is essential for energy efficiency at the edge. 

 Addressing these challenges requires a combination of innovative solutions, best practices, and careful 
planning. Energy-efficient server hardware, power management, and cooling solutions designed for 
harsh environments must be employed. Renewable energy sources, such as solar, wind, and/or 
hydrogen (H2), should be integrated where feasible to reduce reliance on fossil fuels. Customized IT 
infrastructure and data center designs that account for space constraints and environmental 
conditions are necessary. Energy monitoring and management systems should be implemented to 
optimize resource usage and reduce waste. Strategies that effectively integrate edge facilities with 
centralized data centers and cloud services should be developed to enable efficient data processing 
and management. Additionally, enhancing the resilience of edge infrastructure through redundancy, 
backup power, and disaster recovery planning is crucial. 

By addressing these challenges and adopting energy-efficient practices, we can effectively leverage 
edge computing while minimizing its environmental impact and operational costs. 
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3.2.3 Proposed solution 

Exploring renewable energy solutions for the specific needs of Edge Data Centers involves careful 
consideration of various factors and strategies. 

In the technical evaluation, several critical aspects are considered to ensure the resilience and future 
readiness of the solutions: 

● Energy Demand Assessment: The starting point for assessing renewable energy solutions is to 
understand the energy requirements of the telecommunication infrastructure, including base 
stations, data centers, and communication equipment. Analyzing power needs, load profiles, 
and energy consumption patterns is essential to determine suitable renewable energy 
solutions. 

● Renewable Energy Sources: Several energy sources are commonly used in telecommunication 
sites. Solar energy, often harnessed through solar photovoltaic (PV) systems, is widely 
adopted. It's crucial to evaluate factors like available space, solar irradiation levels, system 
sizing, and integration with existing infrastructure. Wind energy is considered in regions with 
favorable wind resources, while hydrogen serves as an energy carrier for transport. 

The proposed solution for this project focuses on reducing the carbon footprint by combining multiple 
renewable energy sources, such as solar and hydrogen, in hybrid systems. These systems offer a 
reliable and consistent energy supply, supported by energy storage solutions like batteries or hydrogen 
storage. Efficient energy management and monitoring systems play a crucial role in optimizing 
renewable energy utilization. These systems may include smart grid technologies, remote monitoring, 
predictive analytics, and real-time energy performance monitoring. 

Scalability and modularity are essential considerations, given the diverse nature of the sites where the 
Data Center will be deployed. Evaluating solutions that can accommodate future growth and adapt to 
changing energy needs is important. Resilience and backup power capabilities are assessed to ensure 
continuous operation during adverse conditions or grid outages. Backup power options like fuel cells 
may be considered to enhance reliability.  

Staying updated on technological advancements in the renewable energy sector is crucial during the 
implementation phase. This involves researching innovative technologies, such as solar tracking 
systems, high-efficiency PV panels, energy-efficient cooling solutions, and energy storage 
advancements. Lastly, compliance with relevant standards and regulations is essential to ensure that 
the selected renewable energy solutions align with industry best practices. Certifications such as ISO 
9001 for quality management and ISO 14001 for environmental management may be considered to 
verify compliance. 

In summary, the evaluation process for implementing renewable energy solutions for Edge Data 
Centers encompasses various factors, including energy demand assessment, the choice of renewable 
energy sources, hybrid systems, efficient management, scalability, resilience, technological 
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advancements, and compliance with industry standards. These considerations aim to create 
sustainable and reliable energy solutions for Edge Data Centers. 

  

3.2.4 Implementation 

The project idea, aimed at implementing a green TLC tower, stems from the observation, as mentioned 
earlier, that the installation of telecommunications towers in locations often situated in areas with 
unreliable electrical supply has, over the years, faced numerous challenges related to energy provision. 
Often, these challenges have led to the design of solutions based on renewable sources, primarily solar 
and wind power, and the integration of traditional generators of varying capacities, albeit always 
powered by fossil fuels. The ongoing shift towards ecological practices, amplified by the current 
historical context, increasingly calls for the adoption of entirely 'green' systems. 

In the conducted experimental project, the decision was made to employ hydrogen (H2) as the most 
promising solution for energy requirements. This choice is bolstered by the versatility of global 
applications across various scenarios, particularly in the field of mobility. This shift towards H2 
adoption has been facilitated by innovations in storage and dispensing methods, which can be 
attributed to: 

● Gaseous storage (in contrast to previous liquid methods) at high pressures, ensuring increased 
density without introducing new management risks. 

● Local production using renewable sources, in contrast to the current supply chain, which 
primarily involves H2 consumption and relies on traditional chains powered by petroleum and 
coal. 

Furthermore, Fuel Cell technologies offer considerable modularity and can serve as an option in 
specific low-power scenarios, including compatibility with methanol. 

To bring the ongoing design phase to completion, several key steps have been necessary: 

1. Developing a reference scenario and aligning the solution with the reference macro-model. 

2. Identifying and validating market products and comprehending associated costs. 

3. Clarifying all aspects related to adoption within the service context, which includes compliance 
with regulations, assessing space requirements, verifying management and maintenance 
costs, integrating automation systems for interventions (such as uninterrupted power supply 
"UPS"), implementing "run-time" monitoring, and establishing attainable autonomy. 

The chosen solution for the project involves a continuity system capable of powering the TLC site 
through a hybrid system that incorporates renewable energy sources and the traditional electrical grid. 
The established TLC site maintains a continuous average power consumption of up to 3000W. 

As a result, the selected design scenario encompasses: 
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● Certification of a transmitting node powered by the electrical grid and an autonomous battery 
pack. 

● Activation of an H2 UPS group, providing continuity in the event of electrical grid faults, 
recharging batteries when the minimum threshold is reached, ignition based on charging 
needs and complete automation. 

● Remote monitoring with the potential for system remote control. 

● Analysis of monthly H2 consumption and the number of interventions required over a six-
month period. 

Through these activities, particularly the latter, the aim is to validate the H2 solution and all the 
necessary processes to provide precise answers and address any doubts related to each phase of 
system utilization and management. 

A subsequent project phase would entail expanding the solar park's capacity to enable autonomous 
and local H2 refueling. The integration of an electrolyzer into the production and storage process 
would necessitate an analysis of managing potential overproduction for recharging functions. This 
approach could lead to the recovery of excess components from the previous site configuration, such 
as downsizing the number of batteries, and an assessment of the viability of cogeneration for reusing 
the produced heat. 

In conclusion, the validation of the hybrid energy supply system, which extensively utilizes renewable 
sources with an emphasis on energy savings, will enable the following: 

1.  Gaining familiarity with the technology. 

2. Understanding the risks and limitations of the proposed innovative system. 

3. Expanding its adoption, not limited to telecom services  by addressing both the technological 
aspect (on-site production) and extending the model to other entities operating in the area. 
This expansion can potentially lead to the creation of energy communities that share H2 
production resources and spaces, thereby broadening the scope of "green" power supply. 

4. Determining how to replicate these results in other applications such as Edge Data Centers. 

 

3.3 IOT COST/POWER-EFFECTIVE INFRASTRUCTURE (STM) 

3.3.1 Scope 

The Internet of Things (IoT) refers to the network of physical objects or "things" (referred as IoT 
Devices) embedded with sensors, software, and other technologies, which enables them to connect, 
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trigger actions and exchange physical data with other IoT devices and systems over the internet. These 
connected devices can range from everyday household items such as refrigerators and thermostats to 
industrial machines in factories, creating a vast network where objects can communicate, collect, and 
exchange physical data. IoT technology enables various IoT applications and IoT services across 
different sectors, including smart homes, healthcare, transportation, agriculture, industrial 
automation, and more. Today IoT together with AI are transforming industries and society since they 
make it possible to automate routine activities while unlocking previously unattainable insights and 
functionality. IoT applications and cloud applications serve different purposes but can complement 
each other in various scenarios. In many practical implementations, IoT applications and cloud 
applications work together harmoniously. IoT devices collect data, which is then sent to the cloud for 
processing, analysis, and long-term storage. Users interact with the IoT devices through cloud-based 
interfaces, enabling remote access and management. This collaborative approach allows for efficient, 
scalable, and user-friendly IoT solutions.  For such a reason we can refer to them as IoT cloud 
infrastructures that enable the management and processing of data in the context of the IoT. 

Traditionally IoT and AI applications have traditionally been deployed in the centralized IoT cloud 
infrastructure because they require the computing resources of data centers to turn data into insights 
and action. In this centralized infrastructure, all data generated by IoT devices is sent to a central cloud 
server or data center for processing, storage, and analysis. Using these centralized infrastructures 
allows an easier way to manage and maintain the IoT solution since all data is stored in one location. 
In addition, it offers very simple scalability since it is easier to scale resources vertically (adding more 
storage and processing power) in a centralized cloud model. Furthermore, they provide a 
comprehensive data analysis as all data is in one location, making it easier to derive insights from large 
datasets.   Two of the major drawbacks of the centralized approach is the latency introduced by the  
data transmission to a central server which might be critical in real-time applications and the 
Bandwidth Usage since all  the sensor data is transmitted to a central location which consumes 
significant network bandwidth and power. 

IoT Sensors have undergone extraordinary proliferation since the beginning of the 21st Century. 
Thanks to IoT, connected, smart sensors are all around us. In 2030 it is estimated that the billions of 
sensors on IoT devices could be responsible for 30% of Internet data traffic, thanks to the widespread 
deployment of 5G. This would significantly increase the carbon impact of IoT applications.  As the 
number of applications grows, we need to reduce their dependence on power-hungry cloud 
computing. Addressing energy and cost efficiency in IoT cloud infrastructures is a way to improve 
environmental sustainability in terms of CO2 emissions while reducing the underline costs. IoT Edge 
computing provides a solution. 

3.3.2 Survey 

IoT Edge computing is a paradigm based on the communication, edge distributed computation and 
data exchange between physical IoT devices and applications [65], linking real life entities with the 
virtual world [66], [67]. This paradigm involves moving some portion of the storage and compute 
resources out of the data center, closer to where the data is being generated (such as sensors etc). In 

https://www.zotero.org/google-docs/?QipDdO
https://www.zotero.org/google-docs/?1mhDVg
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this way, applications and devices collect and analyze data on their own. This approach is gaining 
momentum as it offers meaningful innovation for applications as varied as consumer products, 
building management, predictive maintenance in the industry, autonomy for vehicles, and much more. 
It lowers energy consumption, better protects personal data, reduces latency, and allows decision 
autonomy at the point of use for increased control, learning, and intelligence. IoT Edge computing is 
also a distributed computing model that aims to reduce latency, improve power efficiency, and 
enhance the overall performance of applications and services by bringing computation and data 
handling closer to where they are needed. Some key advantages of the IoT edge computing paradigm 
are the Proximity to Data Sources, Low Latency, Bandwidth Optimization, flexible computing power, 
Improved Privacy and Security, decentralized architecture, low power computation. 

The underlying architecture of the IoT Edge computing paradigm as described in D2.1 (see Figure 13) 
is a set of distributed IoT device nodes communicating with each other according to a hierarchical layer 
structure as shown in the figure below. According to Fremantle [68] IoT Device nodes located at the 
micro Edge are sensors, actuators or tags endowed with a computational unit and one or more 
network connections.  They generally embed power efficient MCU, tiny GPU and TPU able to perform 
intelligent power efficient computations.  

 

Figure 13. IoT Edge granularity. 

Moving up to the layering architecture we found IoT devices located at the Deep Edge layer that collect 
data and perform computation or data handling. They are intelligent controllers or network computing 
units such as gateways etc. The next layer is the Meta Edge. At this layer, we have devices that are 
micro and/or clustered servers installed on-premises. This layer provides the necessary performance 
to execute small scale cloud applications on-premises.  The last layer is the cloud which handles vast 

https://www.zotero.org/google-docs/?PgHc3A
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amounts of data and performs complex processing and analysis. They can identify patterns, generate 
insights, and provide data visualizations. There are many ways in which edge-based computing is 
helping to make different industry sectors smarter and greener. Here are a few examples: 

● Condition monitoring and predictive maintenance in factories can make operations smarter 
and more energy efficient. Sensors provide regular updates on the operating condition of 
machines to determine when they need servicing or if certain component parts need to be 
replaced. This reduces downtime and ensures machines run at optimal energy efficiency. 

● Edge AI will also be critical for the next generation of Collaborative robots (cobots) designed 
to operate in real-time in the same workspace as humans to improve efficiency while ensuring 
their safety. 

● Smart cities can use networks of millions of intelligent sensors and IoT nodes to improve 
monitoring, manage resources, assist citizens, and improve logistics with self-driven drones 
and vehicles. 

● Bringing automation into the agricultural sector can help increase productivity and lower the 
environmental impact. Smart farm vehicles and machines will contribute to sustainability 
strategies by making it possible to use less water, fertilizer, and pesticides. Sensors coupled 
with edge AI allow the distribution of appropriate amounts of water or chemical substances to 
individual plants. 

All these examples generate vast volumes of sensor data that would be highly energy and bandwidth-
inefficient to send to the cloud for processing – as well as generating data protection and latency 
issues. Edge computing with AI provides a way to make them possible in a sustainable manner. 

 

3.3.3 Proposed infrastructure solution 

The proposed solution for this project focuses on reducing the carbon footprint of IoT systems by 

deploying a multilayered power efficient IoT Edge computing with Far Edge (see Figure 14) AI 

computation capabilities. 
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Figure 14. The Far Edge vs the Cloud. 

One of the major advantages when implementing use cases following the IoT Edge Computing 
Paradigm with far-edge AI capabilities is to reduce power consumption by moving cloud services and 
resources toward the far edge of the network. The approach will reuse the FLUIDOS variant of 
KubeEdge framework together with the latest generation of IoT devices based on STM32 (see Figure 
15). Using this variant of KubeEdge it is possible to further reduce the power consumption of the IoT 
infrastructure since the IoT devices will be seen as IoT service providers. In other words, several 
applications running in the cloud can have shared access to the services of data exposed by the IoT 
devices as illustrated in the figure above. This approach will create a continuum computing 
environment that spans from the cloud to the edge. As a matter of fact, KubeEdge leverages 
Kubernetes' container orchestration capabilities and extends them to the edge. It consists of a master 
node (like a Kubernetes master) running in the cloud and edge nodes at the edge of the network where 
we also have IoT device nodes based on low-power and low-cost micro-controllers.  The master node 
called CloudCore manages edge nodes and ensures the synchronization of applications and data 
between the cloud and the micro edge where we will have plenty of sophisticated IoT device nodes. 

Based on the latest technology advances, IoT device nodes are becoming very sophisticated offering 
many possibilities. These devices are becoming smarter and more powerful implementing many 
microservices that contribute to implementing power efficient distributed Applications compared to 
the more traditional cloud-centric approaches. The figure below illustrates one of these IoT device 
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nodes implemented using the STM32 supporting many sensors. Using the physical data produced by 
the different sensors (LPS22HH, STTS751, etc.) the STM32 can perform some local computations which 
outcomes may be seen as microservices to be used by the application running in the cloud. The figure 
below also provides several examples of microservices such as step counters, baby crying, human 
activity recognition etc.  It is important to point out that some of these services may be implemented 
using AI-based and ML-based models that are directly executed by the STM32 MCU or directly by the 
capable sensors instead of to the cloud.  

 

 

Figure 15. Local processing with STM32 and possible ST sensors. 

Some of the key that features contribute toward reducing the carbon footprint that may be used to 
implement the proposed IoT Edge computing with Far-Edge computation capabilities are hereafter 
listed: 

● Local Processing: By processing data locally on IoT device nodes, unnecessary data 
transmission to centralized cloud servers is minimized. Transmitting data over networks 
consumes power, especially in wireless communication. Local processing in IoT device nodes 
reduces the need for data transmission, saving power. 

● Data Filtering and Aggregation: IoT device nodes can be programmed to filter and aggregate 
data before sending it to the cloud. This reduces the amount of data transmitted and, 
consequently, the power required for data transmission. 

● Energy-Efficient Hardware: IoT device nodes can be designed with energy-efficient hardware 
components and processors such as the STM32. The STM32 MCU (Microcontrollers Units) 
family is well known for providing a range of low-power, low-cost MCUs suitable for IoT 
devices. These MCUs offer a combination of features and design considerations that help 
minimize energy consumption in IoT applications. 

● Dynamic Power Management: IoT device nodes can implement dynamic power management 
strategies to adjust their power usage based on workload and activity levels. This can involve 
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putting certain components to sleep when not in use or running at lower clock speeds during 
periods of low activity. 

●  Local Decision-Making: IoT device nodes can make real-time decisions locally, reducing the 
need to wake up a central server or cloud-based resource for every decision. This local 
decision-making capability can lead to lower power consumption for time-sensitive tasks. 

● Optimized Communication Protocols: IoT device nodes can use optimized communication 
protocols that minimize the overhead associated with data transmission. These protocols are 
designed to be energy-efficient and can help reduce power consumption during 
communication with other devices or the cloud. One well-known example of these protocols 
is the LoRAWAN. 

● Energy-Harvesting Solutions: Some IoT device nodes are equipped with energy-harvesting 
technologies such as solar panels or kinetic energy generators. These technologies allow 
devices to generate their own power, reducing their reliance on batteries or external power 
sources. 

● Sleep Modes: IoT device nodes can be programmed to enter low-power sleep modes when 
not actively processing data or communicating. This helps extend the battery life of battery-
powered devices. 

● Device Management: Implementing effective device management and remote monitoring 
systems can help ensure that IoT device nodes are operating efficiently. This includes the 
ability to update firmware over the air, remote management of power states, and the 
possibility to detect and respond to anomalies that might lead to excessive power 
consumption. 

In summary, all these considerations and analysis will offer a toolset for industry, automotive, health, 
agriculture, and many other sectors to continue to innovate while contributing to their 
decarbonization efforts thanks to a cost-power-effective solution for Cloud IoT infrastructure. 
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4 T6.3: AI FOR PERFORMANCE PREDICTION (FBK) 

This chapter explores the capabilities, strengths, and weaknesses of AI-based and ML-based models 
for workload and energy prediction in FLUIDOS. 
 

4.1 RELATED WORK 

Carbon-aware and energy-aware computing are relatively new topics, with most of their development 
happening in the past decade. While prediction models empowering such philosophies have been 
successfully applied to various types of architectures recently, they have a long and extensive history 
in literature. In this section, we distinguish between two different types of prediction models: workload 
prediction and energy prediction. 
 

4.1.1 Workload prediction 

Workload prediction of computer systems has been an active area of research for decades. Early work 
focused on analyzing workload patterns to build predictive models. In 1996, Ntuen and Watson [69] 
proposed a general workload model based on system complexity and task difficulty. However, this 
work mostly focused on modeling, rather than predicting workload. Statistical models were indeed 
already being extensively used, owing to their flexibility, efficiency, and ease of use. Trend analysis and 
time series fitting had already been employed both in literature and practice, statically analyzing past 
data and making short-term predictions. However, only with the advent of machine learning did the 
literature on actual workload prediction begin to flourish.  
 
We can categorize works that perform workload prediction depending on various aspects: for example, 
the type of approach, the environment, or the prediction timeframe. Speaking of the environment, 
one of the main settings found in literature is prediction for individual servers’ workloads. For instance, 
[70] uses machine learning on historical data from a database service to predict server workload and 
detect overload. They found Random Forest most accurate, achieving 88.8% accuracy on synthetic 
data. [71] performed predictions on website data from the NASA and Saskatchewan web servers, 
achieving extremely high accuracy. However, with the advent of cloud computing, microservices, and 
virtualized workloads, performing workload prediction at the machine level started showing its limits. 
 
Indeed, in recent years, most of the work in the literature has focused on workload prediction at the 
virtual machine level. Several works have been produced [72], most of them using ML techniques such 
as Long-Short Term Memory [73]–[75] and Multi-Layer Perceptrons [76].  
 

https://www.zotero.org/google-docs/?mJxCev
https://www.zotero.org/google-docs/?LJ1lKx
https://www.zotero.org/google-docs/?oyVaSu
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Finally, some other works still focus on more resource-constrained devices such as the ones at the 
Edge and for the Internet of Things, such as [77], [78], and [79]. Unfortunately, an underlying issue 
persists when operating in such a setting: the lack of datasets [80]. 
 

4.1.2 Energy prediction 

A slightly different yet connected topic is the one concerned with energy prediction. While workload 
prediction focuses on predicting metrics such as CPU, memory, I/O usage and more, energy prediction 
is more concerned with the actual energy footprint of the device (or virtual machine, container, and 
more). 

Back in the 1990s, the focus on energy efficiency was mostly on mobile devices and pocket computers. 
They often packed relatively energy-hungry processors but lacked both in battery capacity and energy 
management. Some studies such as [81] conducted mathematical studies on algorithms employed in 
mobile devices, such as pseudo-random number generators and sorting algorithms, verifying their 
energy efficiency. 
 
While work on energy-constrained devices and, later, Internet-of-Things devices continued and 
prospered [82], [83], it soon became apparent that energy management was necessary even on power-
hungrier machines. Some work started to be conducted on larger-scale architectures. For instance, 
[84], [85] tried to model the power consumption on a higher-scale, such as in data centers, and 
attempted to integrate it with virtual machine scheduling. [86] is a survey that summarizes the 
outcomes of the research on data center power modeling. 
  
Finally, in the past few years, research has focused on carbon intensity prediction, which is strongly 
related to energy prediction. Indeed, as mentioned in section 6.1, several data sources provide real-
time information about carbon intensity in countries and regions over the world. Thus, data centers 
are able to obtain precise estimations of their carbon footprint. Works such as [87] show how this 
information can be shown and manipulated at the application level, allowing software developers to 
manage metrics such as power usage, power discharging, and carbon intensity. 
 

4.2 FORECASTING MODEL PROTOTYPE 

A proof–of-concept Forecasting Model that feeds data back to the temporal scoring algorithm was 
developed in the scope of Task 6.3. The main purpose of the model is to predict the energy demand of 
a certain FLUIDOS node over a certain amount of time. Given a certain node, the model employs ML 
techniques and previously collected workload data and can provide a rough estimate of the expected 
energy consumption over the following day. 

 

4.2.1 Datasets used and specifications 

https://www.zotero.org/google-docs/?ZHo7VK
https://www.zotero.org/google-docs/?Fyfg45
https://www.zotero.org/google-docs/?l74Q5B
https://www.zotero.org/google-docs/?dtXUmh
https://www.zotero.org/google-docs/?0eg1Jn
https://www.zotero.org/google-docs/?ZStg9N
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Figure 16. Load prediction model workflow. 

The proof-of-concept is written in Python version 3.10.4 and is platform-agnostic. The ML part of the 
model employs the popular Keras library. The way the model is implemented, predictions are hard to 
generalize and are specific to the very machine the model is being run on. Thus, no pre-trained files 
will be distributed; we expect each FLUIDOS node to run its copy of the model and run an initial training 
on its data. After a congruous amount of data collected, roughly at least two weeks from our 
experiments, the model will start providing accurate predictions. 

For this proof-of-concept, we employed two different datasets to feed the model. The first is the 
Google Cluster Dataset [88], [89], a series of workload information collected from Google’s Borg cluster 
deployments. This data includes a wide variety of data, ranging from simple and coarse CPU statistics 
to granular, per-container job information. From this dataset, we obtained rough CPU and memory 
usage averaged over a period of 15 minutes. 

The second dataset is the Standard Performance Evaluation Corporation 2008 (SPECpower_ssj2008) 
benchmark. This dataset comprises thousands of results of the SPEC2008 benchmark, run on several 
different combinations of platform, CPU, memory, and more. We filtered and aggregated this data, 
obtaining some samples of possible power curves - functions that map resource consumption to 
energy consumption - to be used in the model. 

The model is distributed in the form of a Docker image [90]. All information required for a successful 

deployment is available in the README of the aforelinked repository. 

 

Figure  SEQ Figure \* ARABIC 16. Load prediction model workflow. 
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4.2.2 Model architecture 

The model is composed of several sub-components, in particular: 

- the data manipulation component, 
- the learning component, 
- the prediction component. 

Additional components are provided in this proof-of-concept version, which are concerned with 
automating the parsing of the aforementioned datasets and the drawing of result graphs but are not 
fundamental to the inner workings of the application. Figure 16 shows the architecture of the model. 

First, the data manipulation component is tasked with properly preparing the incoming workload data 
and power curves, transforming them into a form suitable for consumption from the learning and 
prediction components. In particular, the workload data is aggregated by machine ID, reordered, and 
a moving average is applied to reduce the amount of data points to one every 15 minutes. This is done 
both for CPU and memory data; the rest of the information is scrapped. 

Then, sequences are prepared by further aggregating the data points over eight-day periods, of which 
the first seven are kept; using the power curves, the last day is instead transformed into a single 
number. This figure represents the amount of energy (in KWh) that the node consumed over that single 
day, and it will be used as a ground truth for the model. The seven days of data plus the energy 
consumption of the eighth day are then packed and saved together, to be used as a sequence by the 
other components. Further sequences are generated in the same manner, but by shifting the time 
window by a customizable amount, which defaults to an hour. With this approach, for example, nine 
days yield twenty-four different sequences to be used by the model. 

The learning and prediction components are the key part of the application. The former takes in input 
a certain amount of data sequences (along with some user-provided parameters) and is tasked with 
training a deep learning model. In its current form, the ML model is a fully connected Convolutional 
Neural Network (CNN), composed of three convolutional layers and a final dense layer. As an input, 
the first layer takes 672 data points over two dimensions, i.e., seven days’ worth of data every 15 
minutes, both for CPU and memory usage. As an output, a dense layer condenses the model’s 
information into a single value. 
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The hyperparameters for the model have been obtained using Keras’ Tuner library, which automates 
the calculation and evaluation of hyperparameters of ML models. A summary of these layers is shown 
in Figure 17. 

 

Figure 17. Layers of CNN used in the load prediction model. 

Once created, the model is then trained using the Adam optimizer and Mean Squared Error as a loss 
function. Furthermore, several Keras callback functions aid in the gradient descent process, such as 
Early Stopping, Model Checkpointing, and more. In particular, the former halts the training phase when 
the loss function starts to diverge from the optimum, while the model checkpointing periodically saves 
the best model obtained so far, mitigating overfitting scenarios. Once a satisfactory result is obtained, 
the model is saved to disk and submitted to the prediction component. The system allows users to 
create a potentially unlimited number of models now, and additionally to retrain them with new data.  

Finally, the prediction component takes into input a different set of workload data, a trained model, 
and queries the model. While it is important not to re-feed data used for training to the model — else 
the prediction would be a trivial task — the same power curve data must be maintained in order to 
obtain consistent results. Indeed, during our research, we found out that the current architecture does 
not well support training with data from a certain machine and predicting others. Indeed, each 
machine in the dataset probably had different specifications, usage, and therefore yielded different 
trends and statistics. After training the model on that particular machine, attempting to predict other 
machines’ workload resulted in inconsistent if not wrong predictions at all. 

With that in mind, the component outputs a single number, representing the energy (in KWh) the 
model estimates the machine will consume in the following day. It is then printed to the user, along 
with a collection of metrics that evaluate the performance of the model over that particular set of 
data. In particular, the users are presented with the R2 score (coefficient of determination), the mean 
squared error, and the mean absolute error. 
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In a future production deployment, the prediction model will be running continuously, and a separate 
module will be tasked with fetching real-time performance metrics from FLUIDOS nodes and 
converting them to a suitable form for both the model generator and the predictor. Such data will be 
fed to a model that will output metrics, but then the results along with the previous metrics will be 
used to evaluate the model, eventually performing retraining to obtain better performance from it. 
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5 CONCLUSIONS 

In this report, we have explored the challenging aspects of creating a sustainable computing 
infrastructure within the FLUIDOS project. Our focus began with the environmental impact of 
decentralized computing, where we recognized the importance of novel strategies for effective energy 
and carbon management. Among these, the implementation of spatial and temporal load shifting was 
highlighted as a key method for leveraging low-carbon electricity sources and optimizing energy use. 

The report detailed aspects of carbon-aware computing, emphasizing the need to balance operational 
electricity consumption with the embodied footprint of computing devices. This balance was 
approached through Life Cycle Assessment (LCA), aiming to provide a more comprehensive 
understanding of environmental impacts. 

Moreover, the economic feasibility of sustainable computing infrastructures was examined, pointing 
out the potential cost benefits of energy and carbon-aware strategies. This aspect underlined the 
possibility of wider adoption due to economic incentives. 

Incorporating AI for performance prediction emerged as an intriguing solution, aligning technological 
advancements with environmental sustainability goals. This integration shows promise in enhancing 
resource efficiency while also addressing the concern of carbon emissions in computing 
infrastructures. 

Looking ahead, the report sets specific goals to advance the field of sustainable computing. One such 
goal is the development and working demonstration of a carbon-aware load shifting algorithm. This 
demonstration aims to showcase the practical effectiveness of the algorithm in a lab setting and if 
possible also in real-world scenarios, providing tangible evidence of its benefits, in reducing the carbon 
footprint of computing infrastructures. 

Another focal point for future work is the experimental assessment of the viability of disaggregated 
composable infrastructure. This research aims to explore the potential advantages and challenges of 
this approach, contributing to a deeper understanding of its impact on energy efficiency and overall 
sustainability in computing environments. 

The report further identified the need for a detailed cost assessment of an off-grid edge data center. 
This assessment is crucial to determine the feasibility and economic implications of such 
infrastructures, which could significantly reduce costs while maintaining, or even enhancing, the 
sustainability of computing operations. 
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